[TOC]
Service 通常用于提供对 Kubernetes Pod 的访问,但是您也可以将其用于任何其他形式的后端。例如:
apiVersion: v1
kind: Service
metadata:
name: my-service
spec:
ports:
- protocol: TCP
port: 80
targetPort: 9376
因为该 Service 没有 selector,相应的 Endpoint 对象就无法自动创建。您可以手动创建一个 Endpoint 对象,以便将该 Service 映射到后端服务真实的 IP 地址和端口:
apiVersion: v1
kind: Endpoints
metadata:
name: my-service
subsets:
- addresses:
- ip: 192.0.2.42
ports:
- port: 9376
Endpoint 中的 IP 地址不可以是 loopback(127.0.0.0/8 IPv4 或 ::1/128 IPv6),或 link-local(169.254.0.0/16 IPv4、224.0.0.0/24 IPv4 或 fe80::/64 IPv6)
Endpoint 中的 IP 地址不可以是集群中其他 Service 的 ClusterIP
对于 Service 的访问者来说,Service 是否有 label selector 都是一样的。在上述例子中,Service 将请求路由到 Endpoint 192.0.2.42:9376 (TCP)。
service通过selector和pod建立关联。
k8s会根据service关联到pod的podIP信息组合成一个endpoint。
若service定义中没有selector字段,service被创建时,endpoint controller不会自动创建endpoint。
service 负载分发策略有两种:
DNS:可以通过cluster add-on的方式轻松的创建KubeDNS来对集群内的Service进行服务发现————这也是k8s官方强烈推荐的方式。为了让Pod中的容器可以使用kube-dns来解析域名,k8s会修改容器的/etc/resolv.conf配置。
endpoint是k8s集群中的一个资源对象,存储在etcd中,用来记录一个service对应的所有pod的访问地址。
service配置selector,endpoint controller才会自动创建对应的endpoint对象;否则,不会生成endpoint对象.
例如,k8s集群中创建一个名为k8s-classic-1113-d3的service,就会生成一个同名的endpoint对象,如下图所示。其中ENDPOINTS就是service关联的pod的ip地址和端口。
kube get endpoints
endpoint controller是k8s集群控制器的其中一个组件,其功能如下:
负责生成和维护所有endpoint对象的控制器
负责监听service和对应pod的变化
监听到service被删除,则删除和该service同名的endpoint对象
监听到新的service被创建,则根据新建service信息获取相关pod列表,然后创建对应endpoint对象
监听到service被更新,则根据更新后的service信息获取相关pod列表,然后更新对应endpoint对象
监听到pod事件,则更新对应的service的endpoint对象,将podIp记录到endpoint中
kube-proxy负责service的实现,即实现了k8s内部从pod到service和外部从node port到service的访问。
kube-proxy采用iptables的方式配置负载均衡,基于iptables的kube-proxy的主要职责包括两大块:一块是侦听service更新事件,并更新service相关的iptables规则,一块是侦听endpoint更新事件,更新endpoint相关的iptables规则(如 KUBE-SVC-链中的规则),然后将包请求转入endpoint对应的Pod。如果某个service尚没有Pod创建,那么针对此service的请求将会被drop掉。
kube-proxy的架构如下:
kube-proxy监听service和endpoint的变化(service创建删除和修改, pod的扩张与缩小),将需要新增的规则添加到iptables中。
kube-proxy只是作为controller,而不是server,真正服务的是内核的netfilter,体现在用户态则是iptables。
kube-proxy的iptables方式也支持RoundRobin(默认模式)和SessionAffinity负载分发策略。
kubernetes只操作了filter和nat表。
Filter:在该表中,一个基本原则是只过滤数据包而不修改他们。filter table的优势是小而快,可以hook到input,output和forward。这意味着针对任何给定的数据包,只有可能有一个地方可以过滤它。
NAT:此表的主要作用是在PREROUTING和POSTROUNTING的钩子中,修改目标地址和原地址。与filter表稍有不同的是,该表中只有新连接的第一个包会被修改,修改的结果会自动apply到同一连接的后续包中。
kube-proxy对iptables的链进行了扩充,自定义了KUBE-SERVICES,KUBE-NODEPORTS,KUBE-POSTROUTING,KUBE-MARK-MASQ和KUBE-MARK-DROP五个链,并主要通过为KUBE-SERVICES chain增加rule来配制traffic routing 规则。我们可以看下自定义的这几个链的作用:
KUBE-MARK-DROP - [0:0] 对于未能匹配到跳转规则的traffic set mark 0x8000,有此标记的数据包会在filter表drop掉
KUBE-MARK-MASQ - [0:0] 对于符合条件的包 set mark 0x4000, 有此标记的数据包会在KUBE-POSTROUTING chain中统一做MASQUERADE
KUBE-NODEPORTS - [0:0] 针对通过nodeport访问的package做的操作
KUBE-POSTROUTING - [0:0]KUBE-SERVICES - [0:0] 操作跳转规则的主要chain
同时,kube-proxy也为默认的prerouting、output和postrouting chain增加规则,使得数据包可以跳转至k8s自定义的chain,规则如下:
-A PREROUTING -m comment --comment "kubernetes service portals" -j KUBE-SERVICES
-A OUTPUT -m comment --comment "kubernetes service portals" -j KUBE-SERVICES
-A POSTROUTING -m comment --comment "kubernetes postrouting rules" -j KUBE-POSTROUTING
如果service类型为nodePort,(从LB转发至node的数据包均属此类)那么将KUBE-NODEPORTS链中每个目的地址是NODE节点端口的数据包导入这个“KUBE-SVC-”链:
-A KUBE-SERVICES -m comment --comment "kubernetes service nodeports; NOTE: this must be the last rule in this chain" -m addrtype --dst-type LOCAL -j KUBE-NODEPORTS
-A KUBE-NODEPORTS -p tcp -m comment --comment "default/es1:http" -m tcp --dport 32135 -j KUBE-MARK-MASQ
-A KUBE-NODEPORTS -p tcp -m comment --comment "default/es1:http" -m tcp --dport 32135 -j KUBE-SVC-LAS23QA33HXV7KBL
Iptables chain支持嵌套并因为依据不同的匹配条件可支持多种分支,比较难用标准的流程图来体现调用关系,建单抽象为下图:
举个例子,在k8s集群中创建了一个名为my-service的服务,其中:
service vip:10.11.97.177
对应的后端两副本pod ip:10.244.1.10、10.244.2.10
容器端口为:80
服务端口为:80
则kube-proxy为该service生成的iptables规则主要有以下几条:
-A KUBE-SERVICES -d 10.11.97.177/32 -p tcp -m comment --comment "default/my-service: cluster IP" -m tcp --dport 80 -j KUBE-SVC-BEPXDJBUHFCSYIC3
-A KUBE-SVC-BEPXDJBUHFCSYIC3 -m comment --comment “default/my-service:” -m statistic --mode random --probability 0.50000000000 -j KUBE-SEP-U4UWLP4OR3LOJBXU //50%的概率轮询后端pod
-A KUBE-SVC-BEPXDJBUHFCSYIC3 -m comment --comment "default/my-service:" -j KUBE-SEP-QHRWSLKOO5YUPI7O
-A KUBE-SEP-U4UWLP4OR3LOJBXU -s 10.244.1.10/32 -m comment --comment "default/my-service:" -j KUBE-MARK-MASQ
-A KUBE-SEP-U4UWLP4OR3LOJBXU -p tcp -m comment --comment "default/my-service:" -m tcp -j DNAT --to-destination 10.244.1.10:80
-A KUBE-SEP-QHRWSLKOO5YUPI7O -s 10.244.2.10/32 -m comment --comment "default/my-service:" -j KUBE-MARK-MASQ
-A KUBE-SEP-QHRWSLKOO5YUPI7O -p tcp -m comment --comment "default/my-service:" -m tcp -j DNAT --to-destination 10.244.2.10:80
kube-proxy通过循环的方式创建后端endpoint的转发,概率是通过probability后的1.0/float64(n-i)计算出来的,譬如有两个的场景,那么将会是一个0.5和1也就是第一个是50%概率第二个是100%概率,如果是三个的话类似,33%、50%、100%。