[TOC]
canal: 阿里巴巴mysql数据库binlog的增量订阅&消费组件
mysql服务端修改配置并重启
$ vi /etc/my.cnf
[mysqld]
log-bin=mysql-bin
binlog-format=ROW
server_id=1
$ mysql -uroot
CREATE USER canal IDENTIFIED BY 'canal';
GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%' ;
FLUSH PRIVILEGES;
$ sudo service mysqld start
问题:创建canal用户的目的是什么?直接使用现有的用户名可以吗,比如root。
答案:有些用户没有REPLICATION SLAVE, REPLICATION CLIENT的权限,用这些用户连接canal时,无法获取到binlog。
这里的canal用户授权了全部权限,所以客户端可以从canal中获取binlog。
明确两个概念:canal server连接mysql,客户端连接canal server。
本机连接服务端,验证binlog的格式是ROW
$ mysql -h192.168.6.52 -ucanal -pcanal
mysql> show variables like '%binlog_format%';
+---------------+-------+
| Variable_name | Value |
+---------------+-------+
| binlog_format | ROW |
+---------------+-------+
mysql主从复制的原理:
在启动canal之前,先来了解下什么是mysql的binlog:
mysql> show binlog events; ```
mysql数据文件下会生成mysql-bin.xxx的binlog文件,以及索引文件
$ ll /var/lib/mysql/
总用量 26228
drwx------ 2 mysql mysql 4096 10月 11 14:05 canal_test
-rw-rw---- 1 mysql mysql 10485760 9月 30 22:12 ibdata1
-rw-rw---- 1 mysql mysql 5242880 10月 11 09:57 ib_logfile0
-rw-rw---- 1 mysql mysql 5242880 10月 11 09:57 ib_logfile1
drwx------ 2 mysql mysql 4096 8月 2 11:01 mysql
-rw-rw---- 1 mysql mysql 18451 8月 2 11:01 mysql-bin.000001
-rw-rw---- 1 mysql mysql 929226 8月 2 11:01 mysql-bin.000002
-rw-rw---- 1 mysql mysql 4890698 9月 30 22:12 mysql-bin.000003
-rw-rw---- 1 mysql mysql 897 10月 11 14:06 mysql-bin.000004
-rw-rw---- 1 mysql mysql 76 10月 11 09:57 mysql-bin.index
srwxrwxrwx 1 mysql mysql 0 10月 11 09:57 mysql.sock
针对mysql的操作都会有二进制的事件记录到binlog文件中。下面的一些操作包括创建用户,授权,创建数据库,创建表,插入一条记录。
$ sudo strings /var/lib/mysql/mysql-bin.000004
5.1.73-log
CREATE USER canal IDENTIFIED BY 'canal'
root localhost
GRANT ALL PRIVILEGES ON *.* TO 'canal'@'%'
FLUSH PRIVILEGES
canal_test
create database canal_test ===》创建数据库
canal_test
create table test ( uid int (4) primary key not null auto_increment, name varchar(10) not null) ==》创建表
canal_test
BEGIN ==》插入记录,这里有事务。但是没有把具体的语句打印出来
canal_test
test
canal_test
COMMIT
部署canal server到6.52,并启动。查看canal的日志:
[ canal]$ cat logs/canal/canal.log
2017-10-11 11:31:52.076 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## start the canal server.
2017-10-11 11:31:52.151 [main] INFO com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[192.168.6.52:11111]
2017-10-11 11:31:52.644 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## the canal server is running now ......
查看instance的日志:
[ canal]$ cat logs/example/example.log
2017-10-11 11:31:52.435 [main] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]
2017-10-11 11:31:52.444 [main] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [example/instance.properties]
2017-10-11 11:31:52.587 [main] INFO c.a.otter.canal.instance.spring.CanalInstanceWithSpring - start CannalInstance for 1-example
2017-10-11 11:31:52.599 [main] INFO c.a.otter.canal.instance.core.AbstractCanalInstance - start successful....
2017-10-11 11:31:52.679 [destination = example , address = /127.0.0.1:3306 , EventParser] WARN c.a.otter.canal.parse.inbound.mysql.MysqlEventParser - prepare to find start position just show master status
canal server的conf下有几个配置文件
➜ canal.deployer-1.0.24 tree conf
conf
├── canal.properties
├── example
│ └── instance.properties
├── logback.xml
└── spring
├── default-instance.xml
├── file-instance.xml
├── group-instance.xml
├── local-instance.xml
└── memory-instance.xml
先来看canal.properties
的common属性前四个配置项:
canal.id= 1
canal.ip=
canal.port= 11111
canal.zkServers=
canal.id是canal的编号,在集群环境下,不同canal的id不同,注意它和mysql的server_id不同。
ip这里不指定,默认为本机,比如上面是192.168.6.52,端口号是11111。zk用于canal cluster。
再看下canal.properties
下destinations相关的配置:
#################################################
######### destinations #############
#################################################
canal.destinations = example
canal.conf.dir = ../conf
canal.auto.scan = true
canal.auto.scan.interval = 5
canal.instance.global.mode = spring
canal.instance.global.lazy = false
canal.instance.global.spring.xml = classpath:spring/file-instance.xml
这里的canal.destinations = example可以设置多个,比如example1,example2,
则需要创建对应的两个文件夹,并且每个文件夹下都有一个instance.properties文件。
全局的canal实例管理用spring,这里的file-instance.xml
最终会实例化所有的destinations instances:
<bean class="com.alibaba.otter.canal.instance.spring.support.PropertyPlaceholderConfigurer" lazy-init="false">
<property name="ignoreResourceNotFound" value="true" />
<property name="systemPropertiesModeName" value="SYSTEM_PROPERTIES_MODE_OVERRIDE"/><!-- 允许system覆盖 -->
<property name="locationNames">
<list>
<value>classpath:canal.properties</value>
<value>classpath:${canal.instance.destination:}/instance.properties</value>
</list>
</property>
</bean>
<bean id="instance" class="com.alibaba.otter.canal.instance.spring.CanalInstanceWithSpring">
<property name="destination" value="${canal.instance.destination}" />
<property name="eventParser"><ref local="eventParser" /></property>
<property name="eventSink"><ref local="eventSink" /></property>
<property name="eventStore"><ref local="eventStore" /></property>
<property name="metaManager"><ref local="metaManager" /></property>
<property name="alarmHandler"><ref local="alarmHandler" /></property>
</bean>
比如canal.instance.destination
等于example,就会加载example/instance.properties
配置文件
example下instance.properties配置文件不需要修改。一个canal server可以运行多个canal instance。
#################################################
## mysql serverId,这里的slaveId不能和myql集群中已有的server_id一样
canal.instance.mysql.slaveId = 1234
# position info 这里连接的是mysql master的地址。
canal.instance.master.address = 127.0.0.1:3306
canal.instance.master.journal.name =
canal.instance.master.position =
canal.instance.master.timestamp =
#canal.instance.standby.address =
#canal.instance.standby.journal.name =
#canal.instance.standby.position =
#canal.instance.standby.timestamp =
# username/password
canal.instance.dbUsername = canal
canal.instance.dbPassword = canal
canal.instance.defaultDatabaseName =
canal.instance.connectionCharset = UTF-8
canal.instance.filter.regex = .*\\\..*
canal.instance.filter.black.regex =
#################################################
在mysql上创建数据库,创建表,插入一条记录,再修改记录。
create database canal_test;
use canal_test;
create table test ( uid int (4) primary key not null auto_increment, name varchar(10) not null);
insert into test (name) values('10');
修改客户端测试例子的连接信息。其中example对应了canal实例的名称。
public class SimpleCanalClientTest extends AbstractCanalClientTest {
public static void main(String args[]) {
String destination = "example";
CanalConnector connector = CanalConnectors.newSingleConnector(
new InetSocketAddress("192.168.6.52", 11111), destination, "canal", "canal");
}
}
注意:如果连接有错误,客户端测试例子会立即结束,打印## stop the canal client。正常的话,终端不会退出,会一直运行。
SimpleCanalClientTest控制台的结果如下:
****************************************************
* Batch Id: [1] ,count : [2] , memsize : [263] , Time : 2017-10-11 14:06:06
* Start : [mysql-bin.000004:396:1507701897000(2017-10-11 14:04:57)]
* End : [mysql-bin.000004:491:1507701904000(2017-10-11 14:05:04)]
****************************************************
----------------> binlog[mysql-bin.000004:396] , name[canal_test,] , eventType : QUERY , executeTime : 1507701897000 , delay : 69710ms
sql ----> create database canal_test
----------------> binlog[mysql-bin.000004:491] , name[canal_test,test] , eventType : CREATE , executeTime : 1507701904000 , delay : 62723ms
sql ----> create table test ( uid int (4) primary key not null auto_increment, name varchar(10) not null)
插入一条记录:(其中uid和name的update都等于true)
****************************************************
* Batch Id: [2] ,count : [3] , memsize : [186] , Time : 2017-10-11 14:06:32
* Start : [mysql-bin.000004:659:1507701989000(2017-10-11 14:06:29)]
* End : [mysql-bin.000004:822:1507701989000(2017-10-11 14:06:29)]
****************************************************
================> binlog[mysql-bin.000004:659] , executeTime : 1507701989000 , delay : 3142ms
BEGIN ----> Thread id: 11
----------------> binlog[mysql-bin.000004:785] , name[canal_test,test] , eventType : INSERT , executeTime : 1507701989000 , delay : 3154ms
uid : 1 type=int(4) update=true
name : 10 type=varchar(10) update=true
----------------
END ----> transaction id: 0
================> binlog[mysql-bin.000004:822] , executeTime : 1507701989000 , delay : 3179ms
修改记录:(其中name的update等于true)
****************************************************
* Batch Id: [3] ,count : [3] , memsize : [202] , Time : 2017-10-11 14:49:11
* Start : [mysql-bin.000004:897:1507704547000(2017-10-11 14:49:07)]
* End : [mysql-bin.000004:1076:1507704547000(2017-10-11 14:49:07)]
****************************************************
================> binlog[mysql-bin.000004:897] , executeTime : 1507704547000 , delay : 4048ms
BEGIN ----> Thread id: 13
----------------> binlog[mysql-bin.000004:1023] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507704547000 , delay : 4059ms
uid : 1 type=int(4)
name : zqhxuyuan type=varchar(10) update=true
----------------
END ----> transaction id: 0
================> binlog[mysql-bin.000004:1076] , executeTime : 1507704547000 , delay : 4096ms
canal安装包下的example instance下除了example.log外,还有一个meta.log
[ canal]$ cat logs/example/meta.log
2017-10-11 14:06:03.728 - clientId:1001 cursor:[mysql-bin.000004,396,1507701897000] address[/127.0.0.1:3306]
2017-10-11 14:06:04.589 - clientId:1001 cursor:[mysql-bin.000004,491,1507701904000] address[localhost/127.0.0.1:3306]
2017-10-11 14:06:29.589 - clientId:1001 cursor:[mysql-bin.000004,822,1507701989000] address[localhost/127.0.0.1:3306]
2017-10-11 14:49:08.589 - clientId:1001 cursor:[mysql-bin.000004,1076,1507704547000] address[localhost/127.0.0.1:3306]
canal client与canal server之间是C/S模式的通信,客户端采用NIO,服务端采用Netty。
canal server启动后,如果没有canal client,那么canal server不会去mysql拉取binlog。
即Canal客户端主动发起拉取请求,服务端才会模拟一个MySQL Slave节点去主节点拉取binlog。
通常Canal客户端是一个死循环,这样客户端一直调用get方法,服务端也就会一直拉取binlog。
public class AbstractCanalClientTest {
protected void process() {
int batchSize = 5 * 1024; // 一次请求拉取多条记录
try {
connector.connect(); // 先连接服务端
connector.subscribe(); // 订阅
// keep send request to canal server, thus canal server can fetch binlog from mysql
while (running) {
Message message = connector.getWithoutAck(batchSize); // 获取指定数量的数据
long batchId = message.getId();
int size = message.getEntries().size();
printSummary(message, batchId, size);
printEntry(message.getEntries());
connector.ack(batchId); // 提交确认
//connector.rollback(batchId); // 处理失败, 回滚数据
}
} finally {
connector.disconnect();
}
}
}
canal client与canal server之间属于增量订阅/消费,流程图如下:(其中C端是canal client,S端是canal server)
canal client调用connect()方法时,发送的数据包(PacketType)类型为:
canal client调用subscribe()
方法,类型为[SUBSCRIPTION]。
对应服务端采用netty处理RPC请求(CanalServerWithNetty
):
public class CanalServerWithNetty extends AbstractCanalLifeCycle implements CanalServer {
public void start() {
bootstrap.setPipelineFactory(new ChannelPipelineFactory() {
public ChannelPipeline getPipeline() throws Exception {
ChannelPipeline pipelines = Channels.pipeline();
pipelines.addLast(FixedHeaderFrameDecoder.class.getName(), new FixedHeaderFrameDecoder());
// 处理客户端的HANDSHAKE请求
pipelines.addLast(HandshakeInitializationHandler.class.getName(),
new HandshakeInitializationHandler(childGroups));
// 处理客户端的CLIENTAUTHENTICATION请求
pipelines.addLast(ClientAuthenticationHandler.class.getName(),
new ClientAuthenticationHandler(embeddedServer));
// 处理客户端的会话请求,包括SUBSCRIPTION,GET等
SessionHandler sessionHandler = new SessionHandler(embeddedServer);
pipelines.addLast(SessionHandler.class.getName(), sessionHandler);
return pipelines;
}
});
}
}
ClientAuthenticationHandler处理鉴权后,会移除HandshakeInitializationHandler和ClientAuthenticationHandler。
最重要的是会话处理器SessionHandler。
以client发送GET,server从mysql得到binlog后,返回MESSAGES给client为例,说明client和server的rpc交互过程:
SimpleCanalConnector发送GET请求,并读取响应结果的流程:
public Message getWithoutAck(int batchSize, Long timeout, TimeUnit unit) throws CanalClientException {
waitClientRunning();
int size = (batchSize <= 0) ? 1000 : batchSize;
long time = (timeout == null || timeout < 0) ? -1 : timeout; // -1代表不做timeout控制
if (unit == null) unit = TimeUnit.MILLISECONDS;
// client发送GET请求
writeWithHeader(Packet.newBuilder()
.setType(PacketType.GET)
.setBody(Get.newBuilder()
.setAutoAck(false)
.setDestination(clientIdentity.getDestination())
.setClientId(String.valueOf(clientIdentity.getClientId()))
.setFetchSize(size)
.setTimeout(time)
.setUnit(unit.ordinal())
.build()
.toByteString())
.build()
.toByteArray());
// client获取GET结果
return receiveMessages();
}
private Message receiveMessages() throws IOException {
// 读取server发送的数据包
Packet p = Packet.parseFrom(readNextPacket());
switch (p.getType()) {
case MESSAGES: {
Messages messages = Messages.parseFrom(p.getBody());
Message result = new Message(messages.getBatchId());
for (ByteString byteString : messages.getMessagesList()) {
result.addEntry(Entry.parseFrom(byteString));
}
return result;
}
}
}
服务端SessionHandler处理客户端发送的GET请求流程:
case GET:
// 读取客户端发送的数据包,封装为Get对象
Get get = CanalPacket.Get.parseFrom(packet.getBody());
// destination表示canal instance
if (StringUtils.isNotEmpty(get.getDestination()) && StringUtils.isNotEmpty(get.getClientId())) {
clientIdentity = new ClientIdentity(get.getDestination(), Short.valueOf(get.getClientId()));
Message message = null;
if (get.getTimeout() == -1) {// 是否是初始值
message = embeddedServer.getWithoutAck(clientIdentity, get.getFetchSize());
} else {
TimeUnit unit = convertTimeUnit(get.getUnit());
message = embeddedServer.getWithoutAck(clientIdentity, get.getFetchSize(), get.getTimeout(), unit);
}
// 设置返回给客户端的数据包类型为MESSAGES
Packet.Builder packetBuilder = CanalPacket.Packet.newBuilder();
packetBuilder.setType(PacketType.MESSAGES);
// 构造Message
Messages.Builder messageBuilder = CanalPacket.Messages.newBuilder();
messageBuilder.setBatchId(message.getId());
if (message.getId() != -1 && !CollectionUtils.isEmpty(message.getEntries())) {
for (Entry entry : message.getEntries()) {
messageBuilder.addMessages(entry.toByteString());
}
}
packetBuilder.setBody(messageBuilder.build().toByteString());
// 输出数据,返回给客户端
NettyUtils.write(ctx.getChannel(), packetBuilder.build().toByteArray(), null);
}
get/ack/rollback协议介绍:
Message getWithoutAck(int batchSize)
,允许指定batchSize,一次可以获取多条,每次返回的对象为Message,包含的内容为:void rollback(long batchId)
,回滚上次的get请求,重新获取数据。基于get获取的batchId进行提交,避免误操作void ack(long batchId)
,确认已经消费成功,通知server删除数据。基于get获取的batchId进行提交,避免误操作EntryProtocol.protod对应的canal消息结构如下:
Entry
Header
logfileName [binlog文件名]
logfileOffset [binlog position]
executeTime [binlog里记录变更发生的时间戳,精确到秒]
schemaName
tableName
eventType [insert/update/delete类型]
entryType [事务头BEGIN/事务尾END/数据ROWDATA]
storeValue [byte数据,可展开,对应的类型为RowChange]
RowChange
isDdl [是否是ddl变更操作,比如create table/drop table]
sql [具体的ddl sql]
rowDatas [具体insert/update/delete的变更数据,可为多条,1个binlog event事件可对应多条变更,比如批处理]
beforeColumns [Column类型的数组,变更前的数据字段]
afterColumns [Column类型的数组,变更后的数据字段]
Column
index
sqlType [jdbc type]
name [column name]
isKey [是否为主键]
updated [是否发生过变更]
isNull [值是否为null]
value [具体的内容,注意为string文本]
SessionHandler中服务端处理客户端的其他类型请求,都会调用CanalServerWithEmbedded的相关方法:
case SUBSCRIPTION:
Sub sub = Sub.parseFrom(packet.getBody());
embeddedServer.subscribe(clientIdentity);
case GET:
Get get = CanalPacket.Get.parseFrom(packet.getBody());
message = embeddedServer.getWithoutAck(clientIdentity, get.getFetchSize());
case CLIENTACK:
ClientAck ack = CanalPacket.ClientAck.parseFrom(packet.getBody());
embeddedServer.ack(clientIdentity, ack.getBatchId());
case CLIENTROLLBACK:
ClientRollback rollback = CanalPacket.ClientRollback.parseFrom(packet.getBody());
embeddedServer.rollback(clientIdentity);// 回滚所有批次
所以真正的处理逻辑在CanalServerWithEmbedded中,下面重点来了。。。
CanalServer包含多个Instance,它的成员变量canalInstances
记录了instance名称与实例的映射关系。
因为是一个Map,所以同一个Server不允许出现相同instance名称(本例中实例名称为example),
比如不能同时有两个example在一个server上。但是允许一个Server上有example1和example2。
注意:
CanalServer
中最重要的是CanalServerWithEmbedded
,而CanalServerWithEmbedded中最重要的是CanalInstance
。
public class CanalServerWithEmbedded extends AbstractCanalLifeCycle implements CanalServer, CanalService {
private Map<String, CanalInstance> canalInstances;
private CanalInstanceGenerator canalInstanceGenerator;
}
下图表示一个server配置了两个Canal实例(instance),每个Client连接一个Instance。
每个Canal实例模拟为一个MySQL的slave,所以每个Instance的slaveId必须不一样。
比如图中两个Instance的id分别是1234和1235,它们都会拉取MySQL主节点的binlog。
这里每个Canal Client都对应一个Instance,每个Client在启动时,
都会指定一个Destination,这个Destination就表示Instance的名称。
所以CanalServerWithEmbedded处理各种请求时的参数都有ClientIdentity,
从ClientIdentity中获取destination,就可以获取出对应的CanalInstance。
理解下各个组件的对应关系:
下面以CanalServerWithEmbedded的订阅方法为例:
注意:提供订阅方法的作用是:MySQL新增了一张表,客户端原先没有同步这张表,现在需要同步,所以需要重新订阅。
public void subscribe(ClientIdentity clientIdentity) throws CanalServerException {
// ClientIdentity表示Canal Client客户端,从中可以获取出客户端指定连接的Destination
// 由于CanalServerWithEmbedded记录了每个Destination对应的Instance,可以获取客户端对应的Instance
CanalInstance canalInstance = canalInstances.get(clientIdentity.getDestination());
if (!canalInstance.getMetaManager().isStart()) {
canalInstance.getMetaManager().start(); // 启动Instance的元数据管理器
}
canalInstance.getMetaManager().subscribe(clientIdentity); // 执行一下meta订阅
Position position = canalInstance.getMetaManager().getCursor(clientIdentity);
if (position == null) {
position = canalInstance.getEventStore().getFirstPosition();// 获取一下store中的第一条
if (position != null) {
canalInstance.getMetaManager().updateCursor(clientIdentity, position); // 更新一下cursor
}
}
// 通知下订阅关系变化
canalInstance.subscribeChange(clientIdentity);
}
每个CanalInstance中包括了四个组件:EventParser、EventSink、EventStore、MetaManager。
服务端主要的处理方法包括get/ack/rollback,这三个方法都会用到Instance上面的几个内部组件,主要还是EventStore和MetaManager:
在这之前,要先理解EventStore的含义,EventStore是一个RingBuffer,有三个指针:Put、Get、Ack。
这三个操作与Instance组件的关系如下:
客户端通过canal server获取mysql binlog有几种方式(get方法和getWithoutAck):
private Events<Event> getEvents(CanalEventStore eventStore, Position start, int batchSize, Long timeout,
TimeUnit unit) {
if (timeout == null) {
return eventStore.tryGet(start, batchSize); // 即时获取
} else if (timeout <= 0){
return eventStore.get(start, batchSize); // 阻塞获取
} else {
return eventStore.get(start, batchSize, timeout, unit); // 异步获取
}
}
注意:EventStore的实现采用了类似Disruptor的RingBuffer环形缓冲区。RingBuffer的实现类是MemoryEventStoreWithBuffer
get方法和getWithoutAck方法的区别是:
以10条数据为例,初始时current=-1,第一个元素起始next=0,end=9,循环[0,9]
所有元素。
List元素为(A,B,C,D,E,F,G,H,I,J)
next | entries[next] | next-current-1 | list element |
---|---|---|---|
0 | entries[0] | 0-(-1)-1=0 | A |
1 | entries[1] | 1-(-1)-1=1 | B |
2 | entries[2] | 2-(-1)-1=2 | C |
3 | entries[3] | 3-(-1)-1=3 | D |
. | ………. | ………. | . |
9 | entries[9] | 9-(-1)-1=9 | J |
第一批10个元素put完成后,putSequence设置为end=9。假设第二批又Put了5个元素:(K,L,M,N,O)
current=9,起始next=9+1=10,end=9+5=14,在Put完成后,putSequence设置为end=14。
next | entries[next] | next-current-1 | list element |
---|---|---|---|
10 | entries[10] | 10-(9)-1=0 | K |
11 | entries[11] | 11-(9)-1=1 | L |
12 | entries[12] | 12-(9)-1=2 | M |
13 | entries[13] | 13-(9)-1=3 | N |
14 | entries[14] | 14-(9)-1=3 | O |
这里假设环形缓冲区的最大大小为15个(源码中是16MB),那么上面两批一共产生了15个元素,刚好填满了环形缓冲区。
如果又有Put事件进来,由于环形缓冲区已经满了,没有可用的slot,则Put操作会被阻塞,直到被消费掉。
下面是Put填充环形缓冲区的代码,检查可用slot(checkFreeSlotAt方法)在几个put方法中。
public class MemoryEventStoreWithBuffer extends AbstractCanalStoreScavenge implements CanalEventStore<Event>, CanalStoreScavenge {
private static final long INIT_SQEUENCE = -1;
private int bufferSize = 16 * 1024;
private int bufferMemUnit = 1024; // memsize的单位,默认为1kb大小
private int indexMask;
private Event[] entries;
// 记录下put/get/ack操作的三个下标
private AtomicLong putSequence = new AtomicLong(INIT_SQEUENCE); // 代表当前put操作最后一次写操作发生的位置
private AtomicLong getSequence = new AtomicLong(INIT_SQEUENCE); // 代表当前get操作读取的最后一条的位置
private AtomicLong ackSequence = new AtomicLong(INIT_SQEUENCE); // 代表当前ack操作的最后一条的位置
// 启动EventStore时,创建指定大小的缓冲区,Event数组的大小是16*1024
// 也就是说算个数的话,数组可以容纳16000个事件。算内存的话,大小为16MB
public void start() throws CanalStoreException {
super.start();
indexMask = bufferSize - 1;
entries = new Event[bufferSize];
}
// EventParser解析后,会放入内存中(Event数组,缓冲区)
private void doPut(List<Event> data) {
long current = putSequence.get(); // 取得当前的位置,初始时为-1,第一个元素为-1+1=0
long end = current + data.size(); // 最末尾的位置,假设Put了10条数据,end=-1+10=9
// 先写数据,再更新对应的cursor,并发度高的情况,putSequence会被get请求可见,拿出了ringbuffer中的老的Entry值
for (long next = current + 1; next <= end; next++) {
entries[getIndex(next)] = data.get((int) (next - current - 1));
}
putSequence.set(end);
}
}
Put是生产数据,Get是消费数据,Get一定不会超过Put。比如Put了10条数据,Get最多只能获取到10条数据。但有时候为了保证Get处理的速度,Put和Get并不会相等。
可以把Put看做是生产者,Get看做是消费者。生产者速度可以很快,消费者则可以慢慢地消费。比如Put了1000条,而Get我们只需要每次处理10条数据。
仍然以前面的示例来说明Get的流程,初始时current=-1,假设Put了两批数据一共15条,maxAbleSequence=14,而Get的BatchSize假设为10。
初始时next=current=-1,end=-1。通过startPosition,会设置next=0。最后end又被赋值为9,即循环缓冲区[0,9]一共10个元素。
private Events<Event> doGet(Position start, int batchSize) throws CanalStoreException {
LogPosition startPosition = (LogPosition) start;
long current = getSequence.get();
long maxAbleSequence = putSequence.get();
long next = current;
long end = current;
// 如果startPosition为null,说明是第一次,默认+1处理
if (startPosition == null || !startPosition.getPostion().isIncluded()) { // 第一次订阅之后,需要包含一下start位置,防止丢失第一条记录
next = next + 1;
}
end = (next + batchSize - 1) < maxAbleSequence ? (next + batchSize - 1) : maxAbleSequence;
// 提取数据并返回
for (; next <= end; next++) {
Event event = entries[getIndex(next)];
if (ddlIsolation && isDdl(event.getEntry().getHeader().getEventType())) {
// 如果是ddl隔离,直接返回
if (entrys.size() == 0) {
entrys.add(event);// 如果没有DML事件,加入当前的DDL事件
end = next; // 更新end为当前
} else {
// 如果之前已经有DML事件,直接返回了,因为不包含当前next这记录,需要回退一个位置
end = next - 1; // next-1一定大于current,不需要判断
}
break;
} else {
entrys.add(event);
}
}
// 处理PositionRange,然后设置getSequence为end
getSequence.compareAndSet(current, end)
}
ack操作的上限是Get,假设Put了15条数据,Get了10条数据,最多也只能Ack10条数据。Ack的目的是清空缓冲区中已经被Get过的数据
public void ack(Position position) throws CanalStoreException {
cleanUntil(position);
}
public void cleanUntil(Position position) throws CanalStoreException {
long sequence = ackSequence.get();
long maxSequence = getSequence.get();
boolean hasMatch = false;
long memsize = 0;
for (long next = sequence + 1; next <= maxSequence; next++) {
Event event = entries[getIndex(next)];
memsize += calculateSize(event);
boolean match = CanalEventUtils.checkPosition(event, (LogPosition) position);
if (match) {// 找到对应的position,更新ack seq
hasMatch = true;
if (batchMode.isMemSize()) {
ackMemSize.addAndGet(memsize);
// 尝试清空buffer中的内存,将ack之前的内存全部释放掉
for (long index = sequence + 1; index < next; index++) {
entries[getIndex(index)] = null;// 设置为null
}
}
ackSequence.compareAndSet(sequence, next)
}
}
}
rollback回滚方法的实现则比较简单,将getSequence回退到ack位置。
public void rollback() throws CanalStoreException {
getSequence.set(ackSequence.get());
getMemSize.set(ackMemSize.get());
}
下图展示了RingBuffer的几个操作示例:
EventStore负责存储解析后的Binlog事件,而解析动作负责拉取Binlog,它的流程比较复杂。需要和MetaManager进行交互。
比如要记录每次拉取的Position,这样下一次就可以从上一次的最后一个位置继续拉取。所以MetaManager应该是有状态的。
EventParser的流程如下:
上面提到的Connection指的是实现了ErosaConnection
接口的MysqlConnection
。
EventParser
的实现类是实现了AbstractEventParser
的MysqlEventParser
。
EventParser
解析binlog后通过EventSink
写入到EventStore
,这条链路可以通过EventStore的put方法串联起来:
其实这里还有一个EventTransactionBuffer缓冲区,即Parser解析后先放到缓冲区中,
当事务发生时或者数据超过阈值,就会执行刷新操作:即消费缓冲区的数据,放到EventStore中。
这个缓冲区有两个偏移量指针:putSequence和flushSequence。
单机模拟两个Canal Server,将单机模式复制出两个文件夹,并修改相关配置
canal_m/conf/canal.properties
canal.id= 2
canal.ip=
canal.port= 11112
canal.zkServers=localhost:2181
canal.instance.global.spring.xml = classpath:spring/default-instance.xml
canal_m/conf/example/instance.properties
canal.instance.mysql.slaveId = 1235
canal_s
canal.id= 3
canal.ip=
canal.port= 11113
canal.zkServers=localhost:2181
canal.instance.global.spring.xml = classpath:spring/default-instance.xml
canal_s/conf/example/instance.properties
canal.instance.mysql.slaveId = 1236
启动canal_m
2017-10-12 14:51:45.202 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## start the canal server.
2017-10-12 14:51:45.776 [main] INFO com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[192.168.6.52:11112]
2017-10-12 14:51:46.687 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## the canal server is running now ......
启动canal_s
2017-10-12 14:52:18.999 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## start the canal server.
2017-10-12 14:52:19.208 [main] INFO com.alibaba.otter.canal.deployer.CanalController - ## start the canal server[192.168.6.52:11113]
2017-10-12 14:52:19.364 [main] INFO com.alibaba.otter.canal.deployer.CanalLauncher - ## the canal server is running now ......
master提供服务,canal_m/logs/example/example.log下有日志,而canal_s/logs没有example文件夹
[ ~]$ tail -f canal_m/logs/example/example.log
2017-10-12 14:51:46.453 [main] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]
2017-10-12 14:51:46.463 [main] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [example/instance.properties]
2017-10-12 14:51:46.624 [main] INFO c.a.otter.canal.instance.spring.CanalInstanceWithSpring - start CannalInstance for 1-example
2017-10-12 14:51:46.644 [main] INFO c.a.otter.canal.instance.core.AbstractCanalInstance - start successful....
2017-10-12 14:51:46.658 [destination = example , address = /127.0.0.1:3306 , EventParser] WARN c.a.otter.canal.parse.inbound.mysql.MysqlEventParser - prepare to find start position just show master status
查看Canal HA记录在ZK的信息
[zk: 192.168.6.52:2181(CONNECTED) 7] ls /otter/canal/destinations/example/cluster
[192.168.6.52:11112, 192.168.6.52:11113]
[zk: 192.168.6.52:2181(CONNECTED) 10] get /otter/canal/destinations/example/running
{"active":true,"address":"192.168.6.52:11112","cid":2}
启动example的ClusterCanalClientTest
CanalConnector connector = CanalConnectors.newClusterConnector("192.168.6.52:2181", destination, "canal", "canal");
执行SQL:update test set name = 'zqh' where uid=1;
,控制台打印日志如下:
****************************************************
* Batch Id: [1] ,count : [3] , memsize : [203] , Time : 2017-10-12 15:05:20
* Start : [mysql-bin.000004:1151:1507791918000(2017-10-12 15:05:18)]
* End : [mysql-bin.000004:1331:1507791918000(2017-10-12 15:05:18)]
****************************************************
================> binlog[mysql-bin.000004:1151] , executeTime : 1507791918000 , delay : 2080ms
BEGIN ----> Thread id: 763
----------------> binlog[mysql-bin.000004:1277] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507791918000 , delay : 2092ms
uid : 1 type=int(4)
name : zqh type=varchar(10) update=true
----------------
END ----> transaction id: 0
================> binlog[mysql-bin.000004:1331] , executeTime : 1507791918000 , delay : 2130ms
再次查看ZK中记录的客户端信息:
[zk: 192.168.6.52:2181(CONNECTED) 18] get /otter/canal/destinations/example/1001/running
{"active":true,"address":"10.57.241.44:53942","clientId":1001}
[zk: 192.168.6.52:2181(CONNECTED) 19] get /otter/canal/destinations/example/1001/cursor
{"@type":"com.alibaba.otter.canal.protocol.position.LogPosition",
"identity":{"slaveId":-1,"sourceAddress":{"address":"localhost","port":3306}},
"postion":{"included":false,"journalName":"mysql-bin.000004","position":1331,"serverId":1,"timestamp":1507791918000}} ==》serverId表示MySQL的server_id
[ ~]$ netstat -anpt|grep 11112
tcp 0 0 0.0.0.0:11112 0.0.0.0:* LISTEN 27816/java ==》Canal服务端
tcp 0 19 192.168.6.52:11112 10.57.241.44:53942 ESTABLISHED 27816/java ==》Canal客户端
停止canal_m
[ canal_m]$ bin/stop.sh
dp0652: stopping canal 27816 ...
Oook! cost:1
Instance会在slave节点即canal_s上启动
[ ~]$ tail -f canal_s/logs/example/example.log
2017-10-12 15:17:21.452 [New I/O server worker #1-1] ERROR com.alibaba.otter.canal.server.netty.NettyUtils - ErrotCode:400 , Caused by :
something goes wrong with channel:[id: 0x0c182149, /10.57.241.44:54008 => /192.168.6.52:11113], exception=com.alibaba.otter.canal.server.exception.CanalServerException: destination:example should start first
2017-10-12 15:17:21.661 [pool-1-thread-1] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [canal.properties]
2017-10-12 15:17:21.663 [pool-1-thread-1] INFO c.a.o.c.i.spring.support.PropertyPlaceholderConfigurer - Loading properties file from class path resource [example/instance.properties]
2017-10-12 15:17:21.767 [pool-1-thread-1] WARN org.springframework.beans.TypeConverterDelegate - PropertyEditor [com.sun.beans.editors.EnumEditor] found through deprecated global PropertyEditorManager fallback - consider using a more isolated form of registration, e.g. on the BeanWrapper/BeanFactory!
2017-10-12 15:17:21.968 [pool-1-thread-1] INFO c.a.otter.canal.instance.spring.CanalInstanceWithSpring - start CannalInstance for 1-example
2017-10-12 15:17:21.998 [pool-1-thread-1] INFO c.a.otter.canal.instance.core.AbstractCanalInstance - start successful....
2017-10-12 15:17:22.071 [destination = example , address = /127.0.0.1:3306 , EventParser] WARN c.a.otter.canal.parse.inbound.mysql.MysqlEventParser - prepare to find start position just last position
{"identity":{"slaveId":-1,"sourceAddress":{"address":"localhost","port":3306}},"postion":{"included":false,"journalName":"mysql-bin.000004","position":1331,"serverId":1,"timestamp":1507791918000}}
停止canal_m后,只剩下canal_s,所以Canal集群只有一个节点了:
[zk: 192.168.6.52:2181(CONNECTED) 14] ls /otter/canal/cluster
[192.168.6.52:11113]
[zk: 192.168.6.52:2181(CONNECTED) 5] get /otter/canal/destinations/example/running
{"active":true,"address":"192.168.6.52:11113","cid":3}
切换过程中,Client的日志
2017-10-12 15:17:22.524 [Thread-2] WARN c.alibaba.otter.canal.client.impl.ClusterCanalConnector - failed to connect to:/192.168.6.52:11113 after retry 0 times
2017-10-12 15:17:22.529 [Thread-2] WARN c.a.otter.canal.client.impl.running.ClientRunningMonitor - canal is not run any in node
2017-10-12 15:17:27.695 [Thread-2] INFO c.alibaba.otter.canal.client.impl.ClusterCanalConnector - restart the connector for next round retry.
****************************************************
* Batch Id: [1] ,count : [1] , memsize : [75] , Time : 2017-10-12 15:17:27
* Start : [mysql-bin.000004:1331:1507791918000(2017-10-12 15:05:18)]
* End : [mysql-bin.000004:1331:1507791918000(2017-10-12 15:05:18)]
****************************************************
----------------
END ----> transaction id: 0
================> binlog[mysql-bin.000004:1331] , executeTime : 1507791918000 , delay : 729763ms
再次执行SQL语句
****************************************************
* Batch Id: [2] ,count : [3] , memsize : [198] , Time : 2017-10-12 15:20:56
* Start : [mysql-bin.000004:1406:1507792855000(2017-10-12 15:20:55)]
* End : [mysql-bin.000004:1581:1507792855000(2017-10-12 15:20:55)]
****************************************************
================> binlog[mysql-bin.000004:1406] , executeTime : 1507792855000 , delay : 1539ms
BEGIN ----> Thread id: 763
----------------> binlog[mysql-bin.000004:1532] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507792855000 , delay : 1539ms
uid : 1 type=int(4)
name : zqhx type=varchar(10) update=true
----------------
END ----> transaction id: 0
================> binlog[mysql-bin.000004:1581] , executeTime : 1507792855000 , delay : 1540ms
停止客户端后,查询ZK中的客户端信息。注意,仍然有cursor信息,但是没有running,因为instance没有对应的client了。
[zk: 192.168.6.52:2181(CONNECTED) 1] ls /otter/canal/destinations/example
[running, cluster, 1001]
[zk: 192.168.6.52:2181(CONNECTED) 0] ls /otter/canal/destinations/example/1001
[cursor]
[zk: 192.168.6.52:2181(CONNECTED) 6] get /otter/canal/destinations/example/1001/cursor
{"@type":"com.alibaba.otter.canal.protocol.position.LogPosition",
"identity":{"slaveId":-1,"sourceAddress":{"address":"localhost","port":3306}},
"postion":{"included":false,"journalName":"mysql-bin.000004","position":1581,"serverId":1,"timestamp":1507792855000}}
cursor信息是instance消费binlog的位置,即使客户端停掉了,也仍然保留在zk中。
注意:1001是ClientIdentity的固定编号,相关源码在SimpleCanalConnector的构造方法里。
下面总结下zk中的相关记录:
/otter/canal/
|- cluster ==> [192.168.6.52:11112, 192.168.6.52:11113]
|- destinations ==> instances
|- example1/ ==> instance name
| |- cluster ==> [192.168.6.52:11112, 192.168.6.52:11113]
| |- running ==> {"active":true,"address":"192.168.6.52:11112","cid":2}
| |- 1001
| |- running ==> {"active":true,"address":"10.57.241.44:53942","clientId":1001}
| |- cursor ==> {localhost:3306,"journalName":"mysql-bin.000004","position":1331,"serverId":1}
|- example2/
| |- cluster ==> [192.168.6.52:11112, 192.168.6.52:11113]
| |- running ==> {"active":true,"address":"192.168.6.52:11112","cid":2}
| |- 1001
| |- running ==> {"active":true,"address":"10.57.241.44:53942","clientId":1001}
| |- cursor ==> {localhost:3306,"journalName":"mysql-bin.000004","position":1331,"serverId":1}
注意这里有两个running节点,第一个是CanalServer,第二个是CanalClient。
/otter/canal/destinations/example1/running
: {“active”:true,”address”:”192.168.6.52:11112”,”cid”:2}/otter/canal/destinations/example1/1001/running
: {“active”:true,”address”:”10.57.241.44:53942”,”clientId”:1001}下图是Canal Server HA的流程图:
Canal Client的方式和canal server方式类似,也是利用zookeeper的抢占EPHEMERAL节点的方式进行控制。
HA的实现,客户端是ClientRunningMonitor,服务端是ServerRunningMonitor。
关于Canal Client HA的验证,可以参考:http://blog.csdn.net/xiaolinzi007/article/details/52933909
Client1的日志:
****************************************************
* Batch Id: [3] ,count : [3] , memsize : [198] , Time : 2017-10-12 17:59:59
* Start : [mysql-bin.000004:1656:1507802398000(2017-10-12 17:59:58)]
* End : [mysql-bin.000004:1831:1507802398000(2017-10-12 17:59:58)]
****************************************************
================> binlog[mysql-bin.000004:1656] , executeTime : 1507802398000 , delay : 1188ms
BEGIN ----> Thread id: 768
----------------> binlog[mysql-bin.000004:1782] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507802398000 , delay : 1199ms
uid : 1 type=int(4)
name : zqh type=varchar(10) update=true
----------------
END ----> transaction id: 0
================> binlog[mysql-bin.000004:1831] , executeTime : 1507802398000 , delay : 1236ms
## stop the canal client## canal client is down.
停止Client1后,Client2的日志:
****************************************************
* Batch Id: [4] ,count : [3] , memsize : [198] , Time : 2017-10-12 18:02:15
* Start : [mysql-bin.000004:1906:1507802534000(2017-10-12 18:02:14)]
* End : [mysql-bin.000004:2081:1507802534000(2017-10-12 18:02:14)]
****************************************************
================> binlog[mysql-bin.000004:1906] , executeTime : 1507802534000 , delay : 1807ms
BEGIN ----> Thread id: 768
----------------> binlog[mysql-bin.000004:2032] , name[canal_test,test] , eventType : UPDATE , executeTime : 1507802534000 , delay : 1819ms
uid : 1 type=int(4)
name : zqhx type=varchar(10) update=true
----------------
END ----> transaction id: 0
================> binlog[mysql-bin.000004:2081] , executeTime : 1507802534000 , delay : 1855ms
观察ZK节点中instance对应的client节点,在Client切换时,会进行变更。
比如下面的客户端从56806端口切换到了56842端口。
把所有客户端都关闭后,1001下没有running。表示instance没有客户端消费binlog了。
启动两个客户端,第一个客户端(56806)正在运行
[zk: 192.168.6.52:2181(CONNECTED) 29] get /otter/canal/destinations/example/1001/running
{"active":true,"address":"10.57.241.44:56806","clientId":1001}
停止第一个客户端,删除节点
[zk: 192.168.6.52:2181(CONNECTED) 30] get /otter/canal/destinations/example/1001/running
Node does not exist: /otter/canal/destinations/example/1001/running
第二个客户端(56842)成为主
[zk: 192.168.6.52:2181(CONNECTED) 31] get /otter/canal/destinations/example/1001/running
{"active":true,"address":"10.57.241.44:56842","clientId":1001}
[zk: 192.168.6.52:2181(CONNECTED) 32] ls /otter/canal/destinations/example/1001
[cursor]
具体实现相关类有:ClientRunningMonitor/ClientRunningListener/ClientRunningData。
client running相关控制,主要为解决client自身的failover机制。
canal client允许同时启动多个canal client,
通过running机制,可保证只有一个client在工作,其他client做为冷备.
当运行中的client挂了,running会控制让冷备中的client转为工作模式,
这样就可以确保canal client也不会是单点. 保证整个系统的高可用性.
下图左边是客户端的HA实现,右边是服务端的HA实现
先理解下面的类图结构:
重新看下CanalServerWithEmbedded的订阅方法。我们知道客户端在连接服务端的某个destination之后,会紧接着调用subscribe()方法。
客户端连接服务端时,必须指定destination名称,因为一个服务端可能有多个destination。
比如服务端启动了两个Instance,它们的destination名称分别是example1和example2。
假设有两个客户端A和B,A连接example1,B连接example2(在代码中手动指定的,不是自动选择)。
服务端的canalInstances字典为:{example1=>Instance1,example2->Instance2}。
那么ClientA的destination等于example1,对应的服务端实例为Instance1。
ClientB的destination等于example2,对应的服务端实例为Instance3。
/**
* 客户端订阅,重复订阅时会更新对应的filter信息
*/
public void subscribe(ClientIdentity clientIdentity) throws CanalServerException {
CanalInstance canalInstance = canalInstances.get(clientIdentity.getDestination());
if (!canalInstance.getMetaManager().isStart()) {
canalInstance.getMetaManager().start();
}
canalInstance.getMetaManager().subscribe(clientIdentity); // 执行一下meta订阅
// 根据Client从MetaManager中获取最近一次的Cursor
Position position = canalInstance.getMetaManager().getCursor(clientIdentity);
if (position == null) { // 如果没有
position = canalInstance.getEventStore().getFirstPosition();// 获取一下store中的第一条
if (position != null) {
canalInstance.getMetaManager().updateCursor(clientIdentity, position); // 更新一下cursor
}
logger.info("subscribe successfully, {} with first position:{} ", clientIdentity, position);
} else { // 有就直接使用
logger.info("subscribe successfully, use last cursor position:{} ", clientIdentity, position);
}
// 通知下订阅关系变化
canalInstance.subscribeChange(clientIdentity);
}
这里面关于订阅方法有两个地方,CanalInstance本身调用了subscribeChange,它关联的MetaManager也调用了subscribe方法。
一个CanalServer可以有多个CanalInstance,每个Instance都会有一个MetaManager。
而一个Instance对应一个Client。那么,这么说来,一个MetaManager也就只会有一个Client了。
但是从下面的数据结构来看的话,一个MetaManager貌似可以有多个Destination。
public class MemoryMetaManager extends AbstractCanalLifeCycle implements CanalMetaManager {
protected Map<String, List<ClientIdentity>> destinations;
protected Map<ClientIdentity, MemoryClientIdentityBatch> batches;
protected Map<ClientIdentity, Position> cursors;
public synchronized void subscribe(ClientIdentity clientIdentity) throws CanalMetaManagerException {
List<ClientIdentity> clientIdentitys = destinations.get(clientIdentity.getDestination());
if (clientIdentitys.contains(clientIdentity)) {
clientIdentitys.remove(clientIdentity);
}
clientIdentitys.add(clientIdentity);
}
}
猜测:多个Client可以连接到同一个Instance(虽然只会有一个Instance起作用),所以一个MetaManager可以管理多个Client。
NO!Client的HA与MetaManager记录的Client是不一样的。HA表示同一时间只有一个Client起作用,那么MetaManager不可能同时记录两个Client。
官方ClientAPI文档上:ClientIdentity是canal client和server交互之间的身份标识,目前clientId写死为1001.
目前canal server上的一个instance只能有一个client消费,
clientId的设计是为1个instance多client消费模式而预留的,暂时不需要理会。
也就是说:一个Instance还是有可能有多个Client连接上来的,只是目前只允许一个而已!!!
这里的数据结构为什么这么设计,还需要参考_AbstractMetaManagerTest_的_doSubscribeTest_方法来理解。
对于相同的destination,可以订阅不同的client。下面的示例分别订阅了[client1,client2]和[client1,client3]。
public void doSubscribeTest(CanalMetaManager metaManager) {
ClientIdentity client1 = new ClientIdentity(destination, (short) 1);
metaManager.subscribe(client1);
metaManager.subscribe(client1); // 重复调用:删除旧的client1,并继续增加新的client1
ClientIdentity client2 = new ClientIdentity(destination, (short) 2);
metaManager.subscribe(client2);
List<ClientIdentity> clients = metaManager.listAllSubscribeInfo(destination);
Assert.assertEquals(Arrays.asList(client1, client2), clients);
metaManager.unsubscribe(client2);
ClientIdentity client3 = new ClientIdentity(destination, (short) 3);
metaManager.subscribe(client3);
clients = metaManager.listAllSubscribeInfo(destination);
Assert.assertEquals(Arrays.asList(client1, client3), clients);
}
有不懂的地方,可以看看测试用例,验证自己的想法是否正确。
CanalServerWithEmbedded的订阅方法最后还会调用AbstractCanalInstance的subscribeChange
方法。
这里会设置表名的filter,以及黑名单。配置项在instance.properties中。
# table regex
canal.instance.filter.regex = .*\\\..*
# table black regex
canal.instance.filter.black.regex =
filter表示客户端要通过Canal Server获取MySQL哪些表的binlog,上面配置项表示获取所有表。
public class AbstractCanalInstance extends AbstractCanalLifeCycle implements CanalInstance {
protected Long canalId; // 和manager交互唯一标示
protected String destination; // 队列名字
protected CanalEventStore<Event> eventStore; // 有序队列
protected CanalEventParser eventParser; // 解析对应的数据信息
protected CanalEventSink<List<CanalEntry.Entry>> eventSink; // 链接parse和store的桥接器
protected CanalMetaManager metaManager; // 消费信息管理器
protected CanalAlarmHandler alarmHandler; // alarm报警机制
@Override
public boolean subscribeChange(ClientIdentity identity) {
if (StringUtils.isNotEmpty(identity.getFilter())) {
logger.info("subscribe filter change to " + identity.getFilter());
AviaterRegexFilter aviaterFilter = new AviaterRegexFilter(identity.getFilter());
boolean isGroup = (eventParser instanceof GroupEventParser);
if (isGroup) {
// 处理group的模式
List<CanalEventParser> eventParsers = ((GroupEventParser) eventParser).getEventParsers();
for (CanalEventParser singleEventParser : eventParsers) {// 需要遍历启动
((AbstractEventParser) singleEventParser).setEventFilter(aviaterFilter);
}
} else {
((AbstractEventParser) eventParser).setEventFilter(aviaterFilter);
}
}
// filter的处理规则
// a. parser处理数据过滤处理
// b. sink处理数据的路由&分发,一份parse数据经过sink后可以分发为多份,每份的数据可以根据自己的过滤规则不同而有不同的数据
// 后续内存版的一对多分发,可以考虑
return true;
}
}
对应在EventParser中,存在两个Filter的引用。比如上面eventParser.setEventFilter()方法会设置AbstractEventParser的eventFilter。
public abstract class AbstractEventParser<EVENT> extends AbstractCanalLifeCycle implements CanalEventParser<EVENT> {
protected CanalLogPositionManager logPositionManager = null;
protected CanalEventSink<List<CanalEntry.Entry>> eventSink = null;
protected CanalEventFilter eventFilter = null;
protected CanalEventFilter eventBlackFilter = null;
}
AbstractEventParser的start()方法是解析binlog的主要方法。
在启动transactionBuffer和BinLogParser后,
会启动一个后台的工作线程parseThread一直运行:
注意:下面的几个步骤是嵌套在一个while死循环里,最后会进行sleep。
// 开始执行replication
// 1\. 构造Erosa连接
erosaConnection = buildErosaConnection();
// 2\. 启动一个心跳线程
startHeartBeat(erosaConnection);
// 3\. 执行dump前的准备工作
preDump(erosaConnection);
// 4\. 连接MySQL数据库
erosaConnection.connect();
// 5\. 获取最后的位置信息
EntryPosition startPosition = findStartPosition(erosaConnection);
logger.info("find start position : {}", startPosition.toString());
// 重新链接,因为在找position过程中可能有状态,需要断开后重建
erosaConnection.reconnect();
// 定义回调函数,当解析成功后,sink()方法会暂存到缓冲区transactionBuffer中。缓冲区的数据会通过心跳线程放入EventSink
final SinkFunction sinkHandler = new SinkFunction<EVENT>() {
private LogPosition lastPosition;
public void sink(EVENT event) {
CanalEntry.Entry entry = parseAndProfilingIfNecessary(event);
if (entry != null) {
transactionBuffer.add(entry);
this.lastPosition = buildLastPosition(entry); // 记录一下对应的positions
}
}
};
// 6\. 开始dump数据
if (StringUtils.isEmpty(startPosition.getJournalName()) && startPosition.getTimestamp() != null) {
erosaConnection.dump(startPosition.getTimestamp(), sinkHandler);
} else {
erosaConnection.dump(startPosition.getJournalName(), startPosition.getPosition(), sinkHandler);
}
这里的erosaConnection指的是Canal Server到MySQL的连接。
而前面我们说的客户端(CanalClient)连接CanalConnector指的是CanalClient到CanalServer的连接。
CanalServer到MySQL的连接是要获取binlog的dump数据包。而CanalClient到CanalServer有多种请求(GET/ACK等)。
我们不会具体分析_dump_的流程,不过粗略看下erosaConnection的MySQL实现MysqlConnection是如何在获取到事件后调用回调函数。
public void dump(String binlogfilename, Long binlogPosition, SinkFunction func) throws IOException {
updateSettings();
sendBinlogDump(binlogfilename, binlogPosition);
// connector指的是CanalServer到MySQL Master服务器的连接,创建一个拉取线程拉取MySQL的binlog
DirectLogFetcher fetcher = new DirectLogFetcher(connector.getReceiveBufferSize());
fetcher.start(connector.getChannel());
LogDecoder decoder = new LogDecoder(LogEvent.UNKNOWN_EVENT, LogEvent.ENUM_END_EVENT);
LogContext context = new LogContext();
while (fetcher.fetch()) { // 由于设置了缓冲区的大小,每次dump都只会拉取一批数据
LogEvent event = null;
event = decoder.decode(fetcher, context);
if (!func.sink(event)) break; // 调用回调方法
}
}
服务端有一个心跳线程,它的目的是消费_transactionBuffer_,并写入到EventSink中。
protected boolean consumeTheEventAndProfilingIfNecessary(List<CanalEntry.Entry> entrys) {
boolean result = eventSink.sink(entrys,
(runningInfo == null) ? null : runningInfo.getAddress(), destination);
return result;
}
EventSink最终会将数据写入到EventStore中,即_Put_到RingBuffer中。回顾下这张图:
前面分析了这么多,一直没分析Canal服务是怎么起来的,其实很简单,
执行脚本startup.sh本质上通过CanalLauncher会启动CanalController。
[zk: 192.168.6.55:2181(CONNECTED) 3] ls /otter/canal/destinations
[octopus_demeter, example_bak, namelist_test, xiaopang2, namelist2, xiaopang3, namelist1, example, xiaopang]
[zk: 192.168.6.55:2181(CONNECTED) 4] ls /otter/canal/destinations/xiaopang
[eunomia, cluster, 1001, running]
[zk: 192.168.6.55:2181(CONNECTED) 5] ls /otter/canal/destinations/xiaopang/eunomia
[_c_2a900d4e-75fb-4445-b30c-04e1bdb2e5d9-lock-0001381746, runnning, _c_ea33db37-9193-4c75-9e61-85e59e123109-lock-0001381738]
// Eunomia Server?还是Canal Client?
[zk: 192.168.6.55:2181(CONNECTED) 7] get /otter/canal/destinations/xiaopang/eunomia/runnning
10.57.17.100
[zk: 192.168.6.55:2181(CONNECTED) 18] get /otter/canal/destinations/xiaopang/1001/running
{"active":true,"address":"10.57.17.100:60661","clientId":1001}