The etcd v3 API is designed to give users a more efficient and cleaner abstraction compared to etcd v2. There are a number of semantic and protocol changes in this new API. For an overview see Xiang Li's video.
To prove out the design of the v3 API the team has also built a number of example recipes, there is a video discussing these recipes too.
Flatten binary key-value space
Keep the event history until compaction
Support range query
Replace TTL key with Lease
Replace CAS/CAD with multi-object Txn
Support efficient watching with multiple ranges
RPC API supports the completed set of APIs.
HTTP API supports a subset of APIs.
The max request size is around 1MB. Since etcd replicates requests in a streaming fashion, a very large
request might block other requests for a long time. The use case for etcd is to store small configuration
values, so we prevent user from submitting large requests. This also applies to Txn requests. We might loosen
the size in the future a little bit or make it configurable.
// A put is always successful
Put( PutRequest { key = foo, value = bar } )
PutResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 1,
raft_term = 0x1,
}
Get ( RangeRequest { key = foo } )
RangeResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 1,
raft_term = 0x1,
kvs = {
{
key = foo,
value = bar,
create_revision = 1,
mod_revision = 1,
version = 1;
},
},
}
Range ( RangeRequest { key = foo, end_key = foo80, limit = 30 } )
RangeResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 100,
raft_term = 0x1,
kvs = {
{
key = foo0,
value = bar0,
create_revision = 1,
mod_revision = 1,
version = 1;
},
...,
{
key = foo30,
value = bar30,
create_revision = 30,
mod_revision = 30,
version = 1;
},
},
}
Txn(TxnRequest {
// mod_revision of foo0 is equal to 1, mod_revision of foo1 is greater than 1
compare = {
{compareType = equal, key = foo0, mod_revision = 1},
{compareType = greater, key = foo1, mod_revision = 1}}
},
// if the comparison succeeds, put foo2 = bar2
success = {PutRequest { key = foo2, value = success }},
// if the comparison fails, put foo2=fail
failure = {PutRequest { key = foo2, value = failure }},
)
TxnResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 3,
raft_term = 0x1,
succeeded = true,
responses = {
// response of PUT foo2=success
{
cluster_id = 0x1000,
member_id = 0x1,
revision = 3,
raft_term = 0x1,
}
}
}
Watch( WatchRequest{
key = foo,
end_key = fop, // prefix foo
start_revision = 20,
end_revision = 10000,
// server decided notification frequency
progress_notification = true,
}
… // this can be a watch request stream
)
// put (foo0=bar0) event at 3
WatchResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 3,
raft_term = 0x1,
event_type = put,
kv = {
key = foo0,
value = bar0,
create_revision = 1,
mod_revision = 1,
version = 1;
},
}
…
// a notification at 2000
WatchResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 2000,
raft_term = 0x1,
// nil event as notification
}
…
// put (foo0=bar3000) event at 3000
WatchResponse {
cluster_id = 0x1000,
member_id = 0x1,
revision = 3000,
raft_term = 0x1,
event_type = put,
kv = {
key = foo0,
value = bar3000,
create_revision = 1,
mod_revision = 3000,
version = 2;
},
}
…