Chapter 9

Virtual Memory

Processes in a system share the CPU and main memory withprdeasses. However, sharing the main
memory poses some special challenges. As demand on the CRidses, processes slow down in some
reasonably smooth way. But if too many processes need tob mamory, then some of them will simply
not be able to run. When a program is out of space, it is outasf IMemory is also vulnerable to corruption.

If some process inadvertently writes to the memory used byh&n process, that process might fail in some
bewildering fashion totally unrelated to the program logic

In order to manage memory more efficiently and with fewerrsirmodern systems provide an abstraction
of main memory known asirtual memory (VM). Virtual memory is an elegant interaction of hardware
exceptions, hardware address translation, main memaly,fiks, and kernel software that provides each
process with a large, uniform, and private address spaceh ¥&vie clean mechanism, virtual memory
provides three important capabilities. (1) It uses main wgnefficiently by treating it as a cache for an

address space stored on disk, keeping only the active ar@aain memory, and transferring data back and
forth between disk and memory as needed. (2) It simplifies omgmanagement by providing each process
with a uniform address space. (3) It protects the addressesplacach process from corruption by other
processes.

Virtual memory is one of the great ideas in computer systékmaajor reason for its success is that it works
silently and automatically, without any intervention fréine application programmer. Since virtual memory
works so well behind the scenes, why would a programmer reeexderstand it? There are several reasons.

e \irtual memory iscentral. Virtual memory pervades all levels of computer systemsjiptakey roles
in the design of hardware exceptions, assemblers, linkexders, shared objects, files, and processes.
Understanding virtual memory will help you better undanst&iow systems work in general.

e \irtual memory is powerful. Virtual memory gives applications powerful capabiliti@sdreate and
destroy chunks of memory, map chunks of memory to portiordisif files, and share memory with
other processes. For example, did you know that you can neatbdify the contents of a disk file
by reading and writing memory locations? Or that you can livedcontents of a file into memory
without doing any explicit copying? Understanding virtaamory will help you harness its powerful
capabilities in your applications.

741

742 CHAPTER 9. VIRTUAL MEMORY

e \irtual memory is dangerous. Applications interact with virtual memory every time theference a
variable, dereference a pointer, or make a call to a dynahaication package such asal | oc. If
virtual memory is used improperly, applications can suffem perplexing and insidious memory-
related bugs. For example, a program with a bad pointer @aihémmediately with a “Segmentation
fault” or a “Protection fault,” run silently for hours be®rcrashing, or scariest of all, run to completion
with incorrect results. Understanding virtual memory, #mel allocation packages suchrasl | oc
that manage it, can help you avoid these errors.

This chapter looks at virtual memory from two angles. Thd fiadf of the chapter describes how virtual
memory works. The second half describes how virtual menwumgéd and managed by applications. There
is no avoiding the fact that VM is complicated, and the disaus reflects this in places. The good news is
that if you work through the details, you will be able to siaiel the virtual memory mechanism of a small
system by hand, and the virtual memory idea will be forevenyified.

The second half builds on this understanding, showing yeutbaise and manage virtual memory in your
programs. You will learn how to manage virtual memory vialExpmemory mapping and calls to dynamic
storage allocators such as tel | oc package. You will also learn about a host of common memdated
errors in C programs and how to avoid them.

9.1 Physical and Virtual Addressing

The main memory of a computer system is organized as an afr&¥ contiguous byte-sized cells. Each
byte has a uniquehysical address (PA). The first byte has an address of 0, the next byte an address of 1
the next byte an address of 2, and so on. Given this simpleizaféoon, the most natural way for a CPU to
access memory would be to use physical addresses. We safigpioactphysical addressing. Figure 9.1
shows an example of physical addressing in the context cdailastruction that reads the word starting at
physical address 4.

Main memory

Physical
address
(PA)

4

CPU

»

oNoaARWONREO

M -1:

Data word

Figure 9.1:A system that uses physical addressing.

When the CPU executes the load instruction, it generateffettiee physical address and passes it to main
memory over the memory bus. The main memory fetches theelvgtd starting at physical address 4 and
returns it to the CPU, which stores it in a register.

9.2. ADDRESS SPACES 743

Early PCs used physical addressing, and systems such & dighal processors, embedded microcon-
trollers, and Cray supercomputers continue to do so. Howewvadern processors use a form of addressing
known asvirtual addressing, as shown in Figure 9.2.

CPU chip Main memory
[0:
Virtual Address | Physical 1:
' address translation | address 2:
CcPU VA VIV G N
'y 4100 i 4 5:
--- 6:
7
M-1

Data word

Figure 9.2:A system that uses virtual addressing.

With virtual addressing, the CPU accesses main memory bgrgéng avirtual address (VA), which is
converted to the appropriate physical address before Isgingto the memory. The task of converting a
virtual address to a physical one is knownaddress trandation. Like exception handling, address transla-
tion requires close cooperation between the CPU hardwateh@noperating system. Dedicated hardware
on the CPU chip called theemory management unit (MMU) translates virtual addresses on the fly, using a
look-up table stored in main memory whose contents are neghlg the operating system.

9.2 Address Spaces

An address space is an ordered set of nonnegative integer addresses
{0,1,2,...}.

If the integers in the address space are consecutive, theaymat it is dinear address space. To simplify
our discussion, we will always assume linear address spdoes system with virtual memory, the CPU
generates virtual addresses from an address spage-oR” addresses called thvirtual address space:

{0,1,2,...,N —1}.

The size of an address space is characterized by the numbits difiat are needed to represent the largest
address. For example, a virtual address space Witk 2" addresses is called anbit address space.
Modern systems typically support either 32-bit or 64-bitwal address spaces.

A system also has physical address space that corresponds to th&l bytes of physical memory in the
system:
{0,1,2,...,M —1}.

M is not required to be a power of two, but to simplify the dissas we will assume that/ = 2™.

744 CHAPTER 9. VIRTUAL MEMORY

The concept of an address space is important because it raaldean distinction between data objects
(bytes) and their attributes (addresses). Once we rea@dhig distinction, then we can generalize and
allow each data object to have multiple independent adesesmch chosen from a different address space.
This is the basic idea of virtual memory. Each byte of main rmgnias a virtual address chosen from the
virtual address space, and a physical address chosen feophyfsical address space.

Practice Problem 9.1:

Complete the following table, filling in the missing entriasd replacing each question mark with the
appropriate integer. Use the following units:=2'° (Kilo), M = 229 (Mega), G= 23" (Giga), T= 2%°
(Tera), P= 2°° (Peta), or E= 269 (Exa).

| # virtual address bits) | # virtual addresses\) | Largest possible virtual addregs
8

27 = 64K

27 1= 716G 1

27 = 256T

64

9.3 VM asaTool for Caching

Conceptually, a virtual memory is organized as an arrayvatontiguous byte-sized cells stored on disk.
Each byte has a unique virtual address that serves as aniimdeke array. The contents of the array on
disk are cached in main memory. As with any other cache in thmaony hierarchy, the data on disk (the
lower level) is partitioned into blocks that serve as thagfar units between the disk and the main memory
(the upper level). VM systems handle this by partitioning ¥irtual memory into fixed-sized blocks called
virtual pages (VPs). Each virtual page i = 2P bytes in size. Similarly, physical memory is partitioned
into physical pages (PPs), alsoP bytes in size. (Physical pages are also referred magsframes.)

Virtual memory Physical memory

VP 0 [Unallocated °
VP 1 [_Cached \: Empty PP O
Uncached PP 1
Unallocated Empty
Cached
Uncached >< Empty
Cached PP 2m-p-]

VP 2n-p-1 | Uncached M-1

N-1
Virtual pages (VP's) Physical pages (PP's)
stored on disk cached in DRAM

Figure 9.3:How a VM system uses main memory as a cache.

At any point in time, the set of virtual pages is partitionatbithree disjoint subsets:

e Unallocated: Pages that have not yet been allocated (or created) by theyéMm. Unallocated
blocks do not have any data associated with them, and thustdmoupy any space on disk.

9.3. VMAS ATOOL FOR CACHING 745

e Cached: Allocated pages that are currently cached in physical mgmor

e Uncached: Allocated pages that are not cached in physical memory.

The example in Figure 9.3 shows a small virtual memory witthevirtual pages. Virtual pages 0 and 3
have not been allocated yet, and thus do not yet exist on digiial pages 1, 4, and 6 are cached in physical
memory. Pages 2, 5, and 7 are allocated, but are not curiathed in main memory.

9.3.1 DRAM Cache Organization

To help us keep the different caches in the memory hierarchight, we will use the ternrSRAM cache to
denote the L1, L2, and L3 cache memories between the CPU aindhmeanory, and the terdRAM cache
to denote the VM system'’s cache that caches virtual pagesin memory.

The position of the DRAM cache in the memory hierarchy hagyarbpact on the way that it is organized.
Recall that a DRAM is at least 10 times slower than an SRAM &ad disk is about 100,000 times slower
than a DRAM. Thus, misses in DRAM caches are very expensivgpaoed to misses in SRAM caches
because DRAM cache misses are served from disk, while SRAdMecaisses are usually served from
DRAM-based main memory. Further, the cost of reading thebiyte from a disk sector is about 100,000
times slower than reading successive bytes in the sectae. bdttom line is that the organization of the
DRAM cache is driven entirely by the enormous cost of misses.

Because of the large miss penalty and the expense of aagéBsifirst byte, virtual pages tend to be large,
typically 4 KB to 2 MB. Due to the large miss penalty, DRAM cashare fully associative, that is, any
virtual page can be placed in any physical page. The replacepolicy on misses also assumes greater
importance, because the penalty associated with repléwengrong virtual page is so high. Thus, operating
systems use much more sophisticated replacement algerfin®RAM caches than the hardware does for
SRAM caches. (These replacement algorithms are beyondcopesere.) Finally, because of the large
access time of disk, DRAM caches always use write-backaasté write-through.

9.3.2 PageTables

As with any cache, the VM system must have some way to deterihanvirtual page is cached somewhere
in DRAM. If so, the system must determine which physical page cached in. If there is a miss, the
system must determine where the virtual page is stored dén slidect a victim page in physical memory,
and copy the virtual page from disk to DRAM, replacing thetimicpage.

These capabilities are provided by a combination of opayaystem software, address translation hardware
in the MMU (memory management unit), and a data structunegtm physical memory known aspage
table that maps virtual pages to physical pages. The addressatianshardware reads the page table each
time it converts a virtual address to a physical address.opkeating system is responsible for maintaining
the contents of the page table and transferring pages bacdoeh between disk and DRAM.

Figure 9.4 shows the basic organization of a page table. A {zdale is an array gfage table entries (PTES).
Each page in the virtual address space has a PTE at a fixetlioftbe page table. For our purposes, we
will assume that each PTE consists ofaéid bit and ann-bit address field. The valid bit indicates whether

746 CHAPTER 9. VIRTUAL MEMORY

the virtual page is currently cached in DRAM. If the valid Bitset, the address field indicates the start of
the corresponding physical page in DRAM where the virtuglepia cached. If the valid bit is not set, then
a null address indicates that the virtual page has not yet dlémcated. Otherwise, the address points to the
start of the virtual page on disk.

Physical memory

Physical page (DRAM)
number or
Valid disk address / VP 1 PP O
VP 2
PTE O] 0 null S
. — VP 4 PP 3
1 «—
0 [
1 i
nul_ A7 Virtual memory
0 o (disk)
prerbl IR o
Memory resident >« _ AN
irtvey
(DRAM) .

Figure 9.4:Page table.

The example in Figure 9.4 shows a page table for a system igitlh wértual pages and four physical pages.
Four virtual pages (VP 1, VP 2, VP 4, and VP 7) are currentlynedcin DRAM. Two pages (VP 0 and
VP 5) have not yet been allocated, and the rest (VP 3 and VPw) lieen allocated but are not currently
cached. An important point to notice about Figure 9.4 is lieatause the DRAM cache is fully associative,
any physical page can contain any virtual page.

Practice Problem 9.2;

Determine the number of page table entries (PTES) that areetkefor the following combinations of
virtual address sizen]) and page sizeK):

[n [P=2 [#PTES]

16 4K
16 8K
32 4K
32 8K

9.3.3 PageHits

Consider what happens when the CPU reads a word of virtualanyeoontained in VP 2, which is cached
in DRAM (Figure 9.5). Using a technique we will describe intalkin Section 9.6, the address translation
hardware uses the virtual address as an index to locate Pri@&r2ad it from memory. Since the valid bit is
set, the address translation hardware knows that VP 2 iedanimemory. So it uses the physical memory

9.3. VM AS A TOOL FOR CACHING 747

address in the PTE (which points to the start of the cached paBP 1) to construct the physical address
of the word.

Virtual address Physical page (DRAM)
number or VP
valid disk address PP O
VP 2
PTEO] O null VP 7
o
1 VP 4
! < PP3
0 .
o/(\
0 null 4 Virtual memory
0 o \\\ (dlSk)
PTE7LL o«
Memory resident >~
page table
(DRAM) "
“~

Figure 9.5:VM page hit. The reference to a word in VP 2 is a hit.

9.34 PageFaults

In virtual memory parlance, a DRAM cache miss is known gmge fault. Figure 9.6 shows the state of
our example page table before the fault. The CPU has refedeaevord in VP 3, which is not cached in
DRAM. The address translation hardware reads PTE 3 from menmders from the valid bit that VP 3 is
not cached, and triggers a page fault exception.

Virtual address

Physical page

number or
Valid disk address
PTE Of 0 null
1 —
1 —
>0 .
i
0 null A
o] [3
PTE 7|1 o ~.

Memory resident

page table
(DRAM)

it

Physical memory

(DRAM)
VP 1 PPO
VP 2
VP 7
VP4 PP 3

Virtual memory
(disk)
VP 1
VP 2
VP 3
VP 4
VP 6
VP 7

Figure 9.6:VM page fault (before). The reference to a word in VP 3 is a miss and triggers a page fault.

The page fault exception invokes a page fault exceptionlbamdthe kernel, which selects a victim page,

748 CHAPTER 9. VIRTUAL MEMORY

in this case VP 4 stored in PP 3. If VP 4 has been modified, thekdmel copies it back to disk. In either
case, the kernel modifies the page table entry for VP 4 to tdfiecfact that VP 4 is no longer cached in
main memory.

Next, the kernel copies VP 3 from disk to PP 3 in memory, usl&€E 3, and then returns. When the
handler returns, it restarts the faulting instruction, abhiesends the faulting virtual address to the address
translation hardware. But now, VP 3 is cached in main menaorg,the page hit is handled normally by the
address translation hardware. Figure 9.7 shows the stater @kample page table after the page fault.

Physical memory

Virtual address Physical page (DRAM)
:| number or VT
Valid disk address / vP 1 PPO
PTE 0|0 null ViR
«—
1 VP 3 PP 3
1 «—
» 1 —
0] hal®
null "~ Virtual memory
0 . N (disk)
PTE 7L CAAEN Jd s VP 1
Memory resident >« _ AANY VP 2
page table ARG VP 3

(DRAM) S~
VP 4

VP 6
VP 7

’
G
“

Figure 9.7:VM page fault (after). The page fault handler selects VP 4 as the victim and replaces it with
a copy of VP 3 from disk. After the page fault handler restarts the faulting instruction, it will read the word
from memory normally, without generating an exception.

Virtual memory was invented in the early 1960s, long befdre widening CPU-memory gap spawned
SRAM caches. As a result, virtual memory systems use a diffeierminology from SRAM caches, even
though many of the ideas are similar. In virtual memory parég blocks are known as pages. The activity of
transferring a page between disk and memory is knovawagping or paging. Pages arewapped in (paged

in) from disk to DRAM, andswapped out (paged out) from DRAM to disk. The strategy of waiting until the
last moment to swap in a page, when a miss occurs, is knowlenaend paging. Other approaches, such
as trying to predict misses and swap pages in before theycarally referenced, are possible. However, all
modern systems use demand paging.

9.3.5 Allocating Pages

Figure 9.8 shows the effect on our example page table wheopbeting system allocates a new page of
virtual memory, for example, as a result of callimgl | oc. In the example, VP 5 is allocated by creating
room on disk and updating PTE 5 to point to the newly createg wa disk.

9.4. VMAS A TOOL FOR MEMORY MANAGEMENT 749

Physical page (DRAM)
number or Ve 1
Valid disk address VP2 PPO
PTEOf 0 null VP 7
1 — VP 3 PP 3
1 —
1 —
o
0 - ~. Virtual memory
0 - ‘)/:\ . (disk)
PTE 7[1 CAON RN
Memory resident ~~_ >« _ N
page table % T
(ORAM) N ACE]

Figure 9.8:Allocating a new virtual page. The kernel allocates VP 5 on disk and points PTE 5 to this new
location.

9.3.6 Locality tothe Rescue Again

When many of us learn about the idea of virtual memory, ourifitpression is often that it must be terribly
inefficient. Given the large miss penalties, we worry thagipa will destroy program performance. In
practice, virtual memory works well, mainly because of oidgrfaend locality.

Although the total number of distinct pages that progranfisremce during an entire run might exceed the
total size of physical memory, the principle of locality prizes that at any point in time they will tend to
work on a smaller set ddictive pages known as theworking set or resident set. After an initial overhead
where the working set is paged into memory, subsequentrafes to the working set result in hits, with no
additional disk traffic.

As long as our programs have good temporal locality, virmaimory systems work quite well. But of
course, not all programs exhibit good temporal localityth# working set size exceeds the size of physi-
cal memory, then the program can produce an unfortunatatisituknown aghrashing, where pages are
swapped in and out continuously. Although virtual memonyssally efficient, if a program’s performance
slows to a crawl, the wise programmer will consider the gmlsi that it is thrashing.

Aside: Counting page faults.
You can monitor the number of page faults (and lots of othfarimation) with the Unixget r usage function.
End Aside.

9.4 VM asaTool for Memory Management

In the last section, we saw how virtual memory provides a rapism for using the DRAM to cache pages
from a typically larger virtual address space. Interesyingpme early systems such as the DEC PDP-11/70
supported a virtual address space that smaadler than the available physical memory. Yet virtual memory

750

CHAPTER 9. VIRTUAL MEMORY

was still a useful mechanism because it greatly simplifiechiorg management and provided a natural way
to protect memory.

To this point, we have assumed a single page table that mapgle girtual address space to the physical
address space. In fact, operating systems provide a seegé table, and thus a separate virtual address
space, for each process. Figure 9.9 shows the basic iddae bxample, the page table for procéssaps

VP 1to PP 2 and VP 2 to PP 7. Similarly, the page table for pgog¢asaps VP 1 to PP 7 and VP 2 to PP
10. Notice that multiple virtual pages can be mapped to theesshared physical page.

Virtual address spaces Physical memory
0
0 Address translation
. VP 1 >
Process i: VP 2

Shared page

VP 1

Process j: N N

M-1

Figure 9.9:How VM provides processes with separate address spaces. The operating system main-
tains a separate page table for each process in the system.

The combination of demand paging and separate virtual agdigaces has a profound impact on the way
that memory is used and managed in a system. In particularsiviilifies linking and loading, the sharing
of code and data, and allocating memory to applications.

e Smplifying linking. A separate address space allows each process to use the asim&bnat for

its memory image, regardless of where the code and datallgateside in physical memory. For
example, as we saw in Figure 8.13, every process on a givanx lspstem has a similar memory
format. The text sectioalways starts at virtual addredx08048000 (for 32-bit address spaces),
or at addres®x400000 (for 64-bit address spaces). The data and bss sections/fiolimediately
after the text section. The stack occupies the highestquodi the process address space and grows
downward. Such uniformity greatly simplifies the design amglementation of linkers, allowing
them to produce fully linked executables that are independkthe ultimate location of the code and
data in physical memory.

Smplifying loading. Virtual memory also makes it easy to load executable andedhalject files
into memory. Recall from Chapter 7 that théext and. dat a sections in ELF executables are
contiguous. To load these sections into a newly createdepspthe Linux loader allocates a contigu-
ous chunk of virtual pages starting at addreg®8048000 (32-bit address spaces) @k400000
(64-bit address spaces), marks them as invalid (i.e., rabter, and points their page table entries
to the appropriate locations in the object file. The inténgspoint is that the loader never actually
copies any data from disk into memory. The data is paged ionaatically and on demand by the
virtual memory system the first time each page is refereneitider by the CPU when it fetches an
instruction, or by an executing instruction when it refe®fna memory location.

9.5. VMAS A TOOL FOR MEMORY PROTECTION 751

This notion of mapping a set of contiguous virtual pages t@awuitrary location in an arbitrary file
is known asmemory mapping. Unix provides a system call calledmap that allows application
programs to do their own memory mapping. We will describeliegpon-level memory mapping in
more detail in Section 9.8.

e Smplifying sharing. Separate address spaces provide the operating system edgtisiatent mecha-
nism for managing sharing between user processes and thatingesystem itself. In general, each
process has its own private code, data, heap, and stacktheg¢ase not shared with any other pro-
cess. In this case, the operating system creates page tladi@sap the corresponding virtual pages
to disjoint physical pages.

However, in some instances it is desirable for processelae ode and data. For example, every
process must call the same operating system kernel codeyvandC program makes calls to routines
in the standard C library such @s i nt f . Rather than including separate copies of the kernel and
standard C library in each process, the operating systerarcange for multiple processes to share a
single copy of this code by mapping the appropriate virtugggs in different processes to the same
physical pages, as we saw in Figure 9.9.

e Smplifying memory allocation. Virtual memory provides a simple mechanism for allocatimiglia
tional memory to user processes. When a program running semuiocess requests additional heap
space (e.g., as aresult of callimgl | oc), the operating system allocates an appropriate numhgr, sa
k, of contiguous virtual memory pages, and maps theiaritrary physical pages located anywhere
in physical memory. Because of the way page tables worketisamo need for the operating system
to locatek contiguous pages of physical memory. The pages can berschtendomly in physical
memory.

9.5 VM asaTool for Memory Protection

Any modern computer system must provide the means for theatipg system to control access to the
memory system. A user process should not be allowed to mislifgad-only text section. Nor should it be
allowed to read or modify any of the code and data structurdésa kernel. It should not be allowed to read
or write the private memaory of other processes, and it shoatdbe allowed to modify any virtual pages
that are shared with other processes, unless all partidgiymllow it (via calls to explicit interprocess
communication system calls).

As we have seen, providing separate virtual address spaaksshit easy to isolate the private memories
of different processes. But the address translation mésinacan be extended in a natural way to provide
even finer access control. Since the address translatiomvhes reads a PTE each time the CPU generates
an address, it is straightforward to control access to théetds of a virtual page by adding some additional
permission bits to the PTE. Figure 9.10 shows the general ide

In this example, we have added three permission bits to éBEh Phe SUP bit indicates whether processes
must be running in kernel (supervisor) mode to access the.pRgocesses running in kernel mode can
access any page, but processes running in user mode ardlongdto access pages for which SUP is 0.
The READ and WRITE bits control read and write access to tlye pgor example, if procegdss running

752 CHAPTER 9. VIRTUAL MEMORY

Page tables with permission bits

SUP READ WRITE Address Physical memory
VPO No | Yes | No PP6 &
Processi: VP 1] No | Yes | Yes PP4 o] PPO
VP 2:| Yes | Yes | Yes PP2 o PP 2
: x PP 4
PP 6
SUP READ WRITE Address /
VPO:l No | Yes [No PP9 o PP 9
Processj: VP 1:| Yes | Yes | Yes PP6 o
VP2 No | Yes | Yes PP1l « |—— " PP 11

Figure 9.10:Using VM to provide page-level memory protection.

in user mode, then it has permission to read VP 0 and to readie VP 1. However, it is not allowed to
access VP 2.

If an instruction violates these permissions, then the ORjders a general protection fault that transfers
control to an exception handler in the kernel. Unix shelfsdglly report this exception as a “segmentation
fault.”

9.6 Address Trandation

This section covers the basics of address translation. i@Lsdo give you an appreciation of the hardware’s
role in supporting virtual memory, with enough detail sa§y@u can work through some concrete examples
by hand. However, keep in mind that we are omitting a numbeletdils, especially related to timing, that
are important to hardware designers but are beyond our s€apgour reference, Figure 9.11 summarizes
the symbols that we will be using throughout this section.

Formally, address translation is a mapping between theezitsrof an/NV-element virtual address space
(VAS) and anM -element physical address space (PAS),
MAP: VAS — PASU)

where

MAP(A) = A'if data at virtual addr is present at physical addy’ in PAS,
() if data at virtual addr4 is not present in physical memory.

Figure 9.12 shows how the MMU uses the page table to perfoismthpping. A control register in the
CPU, thepage table base register (PTBR) points to the current page table. Thdit virtual address has two
components: a-bit virtual page offset (VPO) and an(n — p)-bit virtual page number (VPN). The MMU
uses the VPN to select the appropriate PTE. For example, V&#Ne@ts PTE 0, VPN 1 selects PTE 1, and

9.6. ADDRESS TRANSLATION 753

Basic parameters
Symbol || Description
N =2" Number of addresses in virtual address space
M = 2™ || Number of addresses in physical address space
pP=2r Page size (bytes)

Components of a virtual address (VA)
Symbol || Description

VPO Virtual page offset (bytes)
VPN Virtual page number
TLBI TLB index

TLBT TLB tag

Components of a physical address (PA)
Symbol || Description

PPO Physical page offset (bytes)
PPN Physical page number

CcoO Byte offset within cache block
Cl Cache index

CT Cache tag

Figure 9.11:Summary of address translation symbols.

so on. The corresponding physical address is the concateraftthe physical page number (PPN) from
the page table entry and the VPO from the virtual addressic<itat since the physical and virtual pages
are bothP bytes, thephysical page offset (PPO) is identical to the VPO.

Figure 9.13(a) shows the steps that the CPU hardware perfairan there is a page hit.
e Sep 1: The processor generates a virtual address and sends ét kb .
e Sep 2: The MMU generates the PTE address and requests it from dheraain memory.
e Sep 3: The cache/main memory returns the PTE to the MMU.
e Sep 3: The MMU constructs the physical address and sends it toedangtin memory.

e Sep 4: The cache/main memory returns the requested data woré farticessor.

Unlike a page hit, which is handled entirely by hardware diag a page fault requires cooperation between
hardware and the operating system kernel (Figure 9.13(b)).

e Steps 1to 3: The same as Steps 1 to 3in Figure 9.13(a).

e Sep 4: The valid bit in the PTE is zero, so the MMU triggers an exm@ptwhich transfers control in
the CPU to a page fault exception handler in the operatinggsykernel.

754

Page table

(PTBR)

n-1

CHAPTER 9. VIRTUAL MEMORY

VIRTUAL ADDRESS

p p-1

0

base register _|.. Virtual page number (VPN)

| Virtual page offset (VPO)

> Valid _Physical page number (PPN)

\4

The VPN acts
as index into
the page table

If valid=0

then page

not in memory
(page fault)

Figure 9.12:Address translation with a page table.

Page

table

m-1

A4

p_p-1

h 4 0

Physical page humber (PPN)

Physical page offset (PPO)

PHYSICAL ADDRESS

CPUCchip .
: PTEA _
5 o PTE
' | Processor » MMU @ Cache/
: y VA ' memory
: PA
®
(a) Page hit.

@ MMU

Processor

Page fault exception handler

(b) Page fault.

Cache/
memory

<

Victim page

®

_ New page

©

Disk

Figure 9.13:0Operational view of page hits and page faults. VA: virtual address. PTEA: page table entry
address. PTE: page table entry. PA: physical address.

9.6. ADDRESS TRANSLATION 755

e Sep 5: The fault handler identifies a victim page in physical meynand if that page has been
modified, pages it out to disk.

e Step 6: The fault handler pages in the new page and updates the PMEnTOrYy.

e Sep 7: The fault handler returns to the original process, causiadaulting instruction to be restarted.
The CPU resends the offending virtual address to the MMU aBse the virtual page is now cached
in physical memory, there is a hit, and after the MMU perfotimes steps in Figure 9.13(b), the main
memory returns the requested word to the processor

Practice Problem 9.3;

Given a 32-bit virtual address space and a 24-bit physiadless, determine the number of bits in the
VPN, VPO, PPN, and PPO for the following page siz&s

[P [#VPNbits| #VPO bits| # PPN bits| # PPO bits]
1KB
2 KB
4KB
8 KB

9.6.1 Integrating Cachesand VM

In any system that uses both virtual memory and SRAM cachesg is the issue of whether to use virtual

or physical addresses to access the SRAM cache. Althougtaitedediscussion of the trade-offs is beyond
our scope here, most systems opt for physical addressirty. phWysical addressing, it is straightforward for
multiple processes to have blocks in the cache at the saneeatinh to share blocks from the same virtual
pages. Further, the cache does not have to deal with pratessues because access rights are checked as
part of the address translation process.

Figure 9.14 shows how a physically addressed cache mighitegrated with virtual memory. The main
idea is that the address translation occurs before the daokap. Notice that page table entries can be
cached, just like any other data words.

9.6.2 Speeding up Address Trandation withaTLB

As we have seen, every time the CPU generates a virtual ajdhresMMU must refer to a PTE in order
to translate the virtual address into a physical addresshdmworst case, this requires an additional fetch
from memory, at a cost of tens to hundreds of cycles. If the R3jipens to be cached in L1, then the cost
goes down to one or two cycles. However, many systems tryrtorelte even this cost by including a small
cache of PTEs in the MMU calledteanslation lookaside buffer (TLB).

A TLB is a small, virtually addressed cache where each lirldsha block consisting of a single PTE. A
TLB usually has a high degree of associativity. As shown guFé 9.15, the index and tag fields that are
used for set selection and line matching are extracted frewittual page number in the virtual address. If

