
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Scott Meyers, Ph.D.
Software Development Consultant

http://aristeia.com
smeyers@aristeia.com

CPU Caches and Why You Care

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Last Revised: 10/28/14

A Tale of Two Traversals
Two ways to traverse a matrix:

 Each touches exactly the same memory.

Row Major Column Major

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 2

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

A Tale of Two Traversals
Code very similar:

void sumMatrix(const Matrix<int>& m,
long long& sum, TraversalOrder order)

{
sum = 0;

if (order == RowMajor) {
for (unsigned r = 0; r < m.rows(); ++r) {

for (unsigned c = 0; c < m.columns(); ++c) {
sum += m[r][c];

}
}

} else {
for (unsigned c = 0; c < m.columns(); ++c) {

for (unsigned r = 0; r < m.rows(); ++r) {
sum += m[r][c];

}
}

}
}

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 3

A Tale of Two Traversals
Performance isn’t:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 4

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

A Tale of Two Traversals
Traversal order matters.

Why?

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 5

A Scalability Story
Herb Sutter’s scalability issue in counting odd matrix elements.

 Square matrix of side DIM
with memory in array matrix.

 Sequential pseudocode:

int odds = 0;
for(int i = 0; i < DIM; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++odds;

DIM

DIM

matrix

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 6

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

A Scalability Story
 Parallel pseudocode, take 1:
int result[P];

// Each of P parallel workers processes 1/P-th of the data;
// the p-th worker records its partial count in result[p]
for (int p = 0; p < P; ++p)

pool.run([&,p] {
result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++result[p]; });

pool.join(); // Wait for all tasks to complete

odds = 0; // combine the results
for(int p = 0; p < P; ++p)

odds += result[p];

DIM

DIM

matrix

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 7

A Scalability Story
Scalability unimpressive:

Faster than
1 core

Slower than
1 core

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 8

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

A Scalability Story
 Parallel pseudocode, take 2:
int result[P];

for (int p = 0; p < P; ++p)
pool.run([&,p] {

int count = 0; // instead of result[p]
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++count; // instead of result[p]
result[p] = count; }); // new statement

... // nothing else changes

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 9

A Scalability Story
Scalability now perfect!

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 10

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

A Scalability Story
Thread memory access matters.

Why?

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 11

CPU Caches
Small amounts of unusually fast memory.

 Generally hold contents of recently accessed memory locations.

 Access latency much smaller than for main memory.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 12

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

CPU Caches
Three common types:

 Data (D-cache, D$)

 Instruction (I-cache, I$)

 Translation lookaside buffer (TLB)
Caches virtual→real address translations

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 13

Voices of Experience
Sergey Solyanik (from Microsoft):

Linux was routing packets at ~30Mbps [wired], and wireless at
~20. Windows CE was crawling at barely 12Mbps wired and
6Mbps wireless. ...

We found out Windows CE had a LOT more instruction cache
misses than Linux. ...

After we changed the routing algorithm to be more cache-local, we
started doing 35MBps [wired], and 25MBps wireless - 20% better
than Linux.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 14

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Voices of Experience
Jan Gray (from the MS CLR Performance Team):

If you are passionate about the speed of your code, it is imperative
that you consider ... the cache/memory hierarchy as you design
and implement your algorithms and data structures.

Dmitriy Vyukov (developer of Relacy Race Detector):
Cache-lines are the key! Undoubtedly! If you will make even single
error in data layout, you will get 100x slower solution! No jokes!

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 15

Cache Hierarchies
Cache hierarchies (multi-level caches) are common.

E.g., Intel Core i7-9xx processor:

 32KB L1 I-cache, 32KB L1 D-cache per core
Shared by 2 HW threads

 256 KB L2 cache per core
Holds both instructions and data
Shared by 2 HW threads

 8MB L3 cache
Holds both instructions and data
Shared by 4 cores (8 HW threads)

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 16

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Core i7-9xx Cache Hierarchy

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
2

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
3

Main
Memory

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
0

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 17

CPU Cache Characteristics
Caches are small.

 Assume 100MB program at runtime (code + data).
8% fits in core-i79xx’s L3 cache.
L3 cache shared by every running process (incl. OS).

0.25% fits in each L2 cache.
0.03% fits in each L1 cache.

Caches much faster than main memory.

 For Core i7-9xx:
L1 latency is 4 cycles.
L2 latency is 11 cycles.
L3 latency is 39 cycles.
Main memory latency is 107 cycles.
 27 times slower than L1!
 100% CPU utilization ⇒ >99% CPU idle time!

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 18

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Effective Memory = CPU Cache Memory
From speed perspective, total memory = total cache.

 Core i7-9xx has 8MB fast memory for everything.
Everything in L1 and L2 caches also in L3 cache.

Non-cache access can slow things by orders of magnitude.

Small ≡ fast.

No time/space tradeoff at hardware level.

 Compact, well-localized code that fits in cache is fastest.

 Compact data structures that fit in cache are fastest.

 Data structure traversals touching only cached data are fastest.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 19

Cache Lines
Caches consist of lines, each holding multiple adjacent words.

 On Core i7, cache lines hold 64 bytes.
64-byte lines common for Intel/AMD processors.
64 bytes = 16 32-bit values, 8 64-bit values, etc.
E.g., 16 32-bit array elements.

Main memory read/written in terms of cache lines.

 Read byte not in cache ⇒ read full cache line from main memory.

Write byte ⇒ write full cache line to main memory (eventually).

byte

Cache
Line

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 20

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Cache Lines
Explains why row-major matrix traversal better than column-major:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 21

Cache Line Prefetching
Hardware speculatively prefetches cache lines:

 Forward traversal through cache line n ⇒ prefetch line n+1

 Reverse traversal through cache line n ⇒ prefetch line n-1

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 22

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Implications
 Locality counts.
Reads/writes at address A ⇒ contents near A already cached.
E.g., on the same cache line.
E.g., on nearby cache line that was prefetched.

 Predictable access patterns count.
“Predictable” ≅ forward or backwards traversals.

 Linear array traversals very cache-friendly.
Excellent locality, predictable traversal pattern.
Linear array search can beat log2 n searches of heap-based BSTs.
 log2 n binary search of sorted array can beat O(1) searches of

heap-based hash tables.
Big-Oh wins for large n, but hardware caching takes early lead.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 23

Cache Coherency
From core i7’s architecture:

Assume both cores have cached the value at (virtual) address A.
Whether in L1 or L2 makes no difference.

Consider:
 Core 0 writes to A.
 Core 1 reads A.

What value does Core 1 read?

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
or

e
0

Main
Memory

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 24

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Cache Coherency
Caches a latency-reducing optimization:

 There’s only one virtual memory location with address A.

 It has only one value.

Hardware invalidates Core 1’s cached value when Core 0 writes to A.

 It then puts the new value in Core 1’s cache(s).

Happens automatically.

 You need not worry about it.
Provided you synchronize access to shared data...

 But it takes time.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 25

False Sharing
Suppose Core 0 accesses A and Core 1 accesses A+1.

 Independent pieces of memory; concurrent access is safe.

 But A and A+1 probably map to the same cache line.
 If so, Core 0’s writes to A invalidates A+1’s cache line in Core 1.
And vice versa.
This is false sharing.

A-1 A A+1

Line from Core 0’s cache

A-1 A A+1

Line from Core 1’s cache

L3 Cache

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 1

T0

T1

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 0

Main
Memory

L3 Cache

T0

T1

T0

T1

L1 I-Cache

L1 D-Cache

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 1

T0

T1

T0

T1

L1 I-Cache

L1 D-Cache

L1 I-Cache

L1 D-Cache
L2 Cache

C
o

re
 0

Main
Memory

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 26

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

False Sharing
It explains Herb Sutter’s issue:

int result[P]; // many elements on 1 cache line

for (int p = 0; p < P; ++p)
pool.run([&,p] { // run P threads concurrently

result[p] = 0;
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++result[p]; }); // each repeatedly accesses the
// same array (albeit different
// elements)

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 27

False Sharing
And his solution:

int result[P]; // still multiple elements per
// cache line

for (int p = 0; p < P; ++p)
pool.run([&,p] {

int count = 0; // use local var for counting
int chunkSize = DIM/P + 1;
int myStart = p * chunkSize;
int myEnd = min(myStart+chunkSize, DIM);
for(int i = myStart; i < myEnd; ++i)

for(int j = 0; j < DIM; ++j)
if(matrix[i*DIM + j] % 2 != 0)

++count; // update local var
result[p] = count; }); // access shared cache line

// only once

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 28

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

False Sharing
His scalability results are worth repeating:

With False Sharing Without False Sharing

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 29

False Sharing
Problems arise only when all are true:

 Independent values/variables fall on one cache line.

 Different cores concurrently access that line.

 Frequently.

 At least one is a writer.

All types of data are susceptible:

 Statically allocated (e.g., globals, statics).

Heap allocated.

 Automatics and thread-locals (if pointers/references handed out).

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 30

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Voice of Experience
Joe Duffy at Microsoft:

During our Beta1 performance milestone in Parallel Extensions,
most of our performance problems came down to stamping out
false sharing in numerous places.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 31

Summary
 Small ≡ fast.
No time/space tradeoff in the hardware.

 Locality counts.
Stay in the cache.

 Predictable access patterns count.
Be prefetch-friendly.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 32

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Guidance
For data:

Where practical, employ linear array traversals.
“I don’t know [data structure], but I know an array will beat it.”

 Use as much of a cache line as possible.
Bruce Dawson’s antipattern (from reviews of video games):

struct Object { // assume sizeof(Object) ≥ 64

bool isLive; // possibly a bit field
...

};

std::vector<Object> objects; // or an array

for (std::size_t i = 0; i < objects.size(); ++i) { // pathological if
if (objects[i].isLive) // most objects

doSomething(); // not alive
}

 Be alert for false sharing in MT systems.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 33

Guidance
For code:

 Fit working set in cache.
Avoid iteration over heterogeneous sequences with virtual calls.
E.g., sort sequences by type.

Make “fast paths” branch-free sequences.
Use up-front conditionals to screen out “slow” cases.

 Inline cautiously:
The good:
Reduces branching.
Facilitates code-reducing optimizations.

The bad:
Code duplication reduces effective cache size.

 Take advantage of PGO and WPO.
Can automate some of above.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 34

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Beyond Surface-Scratching
Cache-related topics not really addressed:

 Other cache technology issues:
Memory banks.
Associativity (but wait...).
 Inclusive vs. exclusive content.

 Latency-hiding techniques.
Hyperthreading.

 Cache performance evaluation:
Why it’s critical.
Why it’s hard.
Tools that can help.

 Cache-oblivious algorithm design.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 35

Beyond Surface-Scratching
Overall cache behavior can be counterintuitive.

Matrix traversal redux:

Matrix size can vary.

 For given size, shape can vary:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 36

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Beyond Surface-Scratching
Row major traversal performance unsurprising:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 37

Beyond Surface-Scratching
Column major a different story:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 38

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Beyond Surface-Scratching
A slice through the data:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 39

Beyond Surface-Scratching
Igor Ostrovsky’s demonstration of cache-associativity effects.

White ⇒ fast.

 Blue ⇒ slow.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 40

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Further Information
CPU caches:

What Every Programmer Should Know About Memory, Ulrich
Drepper, 21 November 2007,
http://people.redhat.com/drepper/cpumemory.pdf.

 “CPU cache,” Wikipedia.

 “Gallery of Processor Cache Effects,” Igor Ostrovsky, Igor
Ostrovsky Blogging (Blog), 19 January 2010.

 “Writing Faster Managed Code: Know What Things Cost,” Jan
Gray, MSDN, June 2003.
Relevant section title is “Of Cache Misses, Page Faults, and

Computer Architecture”

 “Optimizing for instruction caches,” Amir Kleen et al., EE Times,
29 Oct. 2007 (part 1), 5 Nov. 2007 (part 2), 12 Nov. 2007 (part 3).

 “Memory is not free (more on Vista performance),” Sergey
Solyanik, 1-800-Magic (Blog), 9 December 2007.
Experience report about optimizing use of I-cache.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 41

Further Information
CPU caches:
 “Martin Thompson on Mechanical Sympathy,” Software

Engineering Radio, 19 February 2014.
 “Eliminate False Sharing,” Herb Sutter, DrDobbs.com, 14 May

2009.
 “False Sharing is no fun,” Joe Duffy, Generalities & Details:

Adventures in the High-tech Underbelly (Blog), 19 October 2009.
 “Real-World Concurrency,” Bryan Cantrill and Jeff Bonwick,

ACM Queue, September 2008.
Discusses false sharing.
 “Native Code Performance and Memory: The Elephant in the

CPU,” Eric Brumer, Channel 9, 28 June 2013.
Video of a Build 2013 presentation.
 “07-26-10 – Virtual Functions,” Charles Bloom, cbloom rants

(Blog), 26 July 2010.
Note ryg’s comment about per-type operation batching.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 42

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Further Information
Data-oriented design:

 “Data-Oriented Design and C++,” Mike Acton, CppCon 2014,.
Conference keynote presentation.
Video available at YouTube.

 “Pitfalls of Object Oriented Programming,” Tony Albrecht,
Game Connect: Asia Pacific 2009.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 43

Further Information
Profile-guided optimization (PGO):

 “Profile-Guided Optimizations,” Gary Carleton, Knud
Kirkegaard, and David Sehr, Dr. Dobb’s Journal, May 1998.
Still a very nice overview.

 “The Future of Code Coverage Tools,” Mohammad Haghighat
and David Sehr, StickyMinds.com.

 “Build faster and high performing native applications using
PGO,” Ankit Asthana, Visual C++ Team Blog, 4 April 2013.

 “/GL and PGO,”Lin Xu, Visual C++ Team Blog, 1 December 2009.

 “POGO,” Lawrence Joel, Visual C++ Team Blog, 12 November
2008.

 “Profile Guided Optimizations,” Shachar Shemesh, Scribd,
Uploaded 3 June 2009, http://tinyurl.com/2u6lvln.
Much code optimization info, including PGO for gcc.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 44

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Further Information
More on PGO:

 “Cache Aware Data Layout Reorganization Optimization in
GCC,” Mostafa Hagog and Caroline Tice, Proceedings of the GCC
Developers’ Summit, June 2005.
Using PGO to change DS layouts to improve D$ performance.

 “Profile driven optimisations in GCC,” Jan Hubička, Proceedings
of the GCC Developers’ Summit, June 2005.

 “GoingNative 12: C++ at Build 2012, Inside Profile Guided
Optimization,” Channel 9, 28 November 2012.
Video interview about PGO support in MS Visual C++.

 “Profile Guided Optimization (PGO)—Under the Hood,” Ankit
Asthana, Visual C++ Team Blog, 27 May 2013.

 “The *New Performance Optimization Tool* for Visual C++
applications,” Ankit Asthana, Visual C++ Team Blog, 22 October
2013.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 45

Further Information
Whole-program optimization (WPO):

 “Optimizing real-world applications with GCC Link Time
Optimization,” Taras Glek and Jan Hubička, Proceedings of the
GCC Developers’ Summit, October 2010.

 “Whole Program Optimization with Visual C++ .NET,” Brandon
Bray, The Code Project, 10 December 2001 .

 “Link-Time Code Generation,” Matt Pietrek, MSDN Magazine,
May 2002.

 “Quick Tips On Using Whole Program Optimization,” Jerry
Goodwin, Visual C++ Team Blog, 24 February 2009.

 “Introducing ‘/Gw’ Compiler Switch,” Ankit Asthana, Visual C++
Team Blog, 11 September 2013.
Enables elimination of unused global data.

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 46

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://www.aristeia.com/

CPU Caches and Why You Care

Licensing Information
Scott Meyers licenses materials for this and other training courses
for commercial or personal use. Details:

 Commercial use: http://aristeia.com/Licensing/licensing.html

 Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 47

About Scott Meyers
Scott is a trainer and consultant on the design and
implementation of C++ software systems. His web
site,

http://www.aristeia.com/

provides information on:

 Training and consulting services

 Books, articles, other publications

 Upcoming presentations

 Professional activities blog

Scott Meyers, Software Development Consultant
http://www.aristeia.com/

© 2013 Scott Meyers, all rights reserved.
Slide 48

