
Mathematical Programming 45 (1989) 503-528 503
North-Holland

ON THE LIMITED M E M O R Y BFGS M E T H O D FOR LARGE
SCALE O P T I M I Z A T I O N

Dong C. LIU and Jorge NOCEDAL
Department of Electrical Engineering and Computer Science, Northwestern University, Evanston,
IL 60208, USA

We study the numerical performance of a limited memory quasi-Newton method for large scale
optimization, which we call the L-BFGS method. We compare its performance with that of the
method developed by Buckley and LeNir (1985), which combines cycles of BFGS steps and
conjugate direction steps. Our numerical tests indicate that the L-BFGS method is faster than the
method of Buckley and LeNir, and is better able to use additional storage to accelerate convergence.
We show that the L-BFGS method can be greatly accelerated by means of a simple scaling. We
then compare the L-BFGS method with the partitioned quasi-Newton method of Griewank and
Toint (1982a). The results show that, for some problems, the partitioned quasi-Newton method
is clearly superior to the L-BFGS method. However we find that for other problems the L-BFGS
method is very competitive due to its low iteration cost. We also study the convergence properties
of the L-BFGS method, and prove global convergence On uniformly convex problems.

Key words: Large scale nonlinear optimization,, limited memory methods, partitioned quasi-
Newton method, conjugate gradient method.

I. Introduction

We consider the minimization of a smooth nonlinear function f : N n ~ N,

m i n f (x) , (1.1)

in the case where the n u m b e r of variables n is large, and where analyt ic expressions

for the func t ion f and the gradient g are available. A mong the most useful methods

for solving this problems are: (i) Newton ' s method and variat ions of it (see, for

example, Steihaug, 1983; O'Leary, 1982; Toint , 1981; Nash, 1985); (ii) the par t i t ioned

quas i -Newton method of Gr iewank and Toin t (1982a); (iii) the conjugate gradient

method (see, for example, Fletcher, 1980; Gill , Murray and Wright, 1981); (iv)

l imited memory quas i -Newton methods.

This paper is devoted to the study of l imited memory quas i -Newton methods for

large scale opt imizat ion. These methods can be seen as extensions of the conjugate

gradient method, in which addi t ional storage is used to accelerate convergence.

They are sui table for large scale problems because the a m o u n t of storage required

This work was supported by the Applied Mathematical Sciences subprogram of the Office of Energy
Research, U.S. Department of Energy, under contract DE-FG02-87ER25047, and by National Science
Foundation Grant No. DCR-86-02071.

504 D.C. Liu, J. Nocedal / Limited memory BFGS

by the algorithms (and thus the cost of the iteration) can be controlled by the user.
Alternatively, limited memory methods can be viewed as implementations of quasi-
Newton methods, in which storage is restricted. Their simplicity is one of their main
appeals: they do not require knowledge of the sparsity structure of the Hessian, or
knowledge of the separability of the objective function, and as we will see in this
paper, they can be very simple to program.

Limited memory methods originated with the work of Perry (1977) and Shanno
(1978b), and were subsequently developed and analyzed by Buckley (1978),
Nazareth (1979), Nocedal (1980), Shanno (1978a), Gill and Murray (1979), and
Buckley and LeNir (1983). Numerical tests performed during the last ten years on
medium size problems have shown that limited memory methods require substan-
tially fewer function evaluations than the conjugate gradient method, even when
little additional storage is added. However little is known regarding the relative
performance of these methods with respect to Newton's method or the partitioned
quasi-Newton algorithm, when solving large problems. Moreover, since the study
by Gill and Murray (1979), there have been no attempts to compare the various
limited memory methods with each other, and it is therefore not known which is
their most effective implementation.

In this paper we present and analyze the results of extensive numerical tests of
two limited memory methods and of the partitioned quasi-Newton algorithm. We
compare the combined CG-QN method of Buckley and LeNir (1983) as implemented
in Buckley and LeNir (1985), the limited memory BFGS method described by
Nocedal (1980), and the partitioned quasi-Newton method, as implemented by
Toint (1983b). The results indicate that the limited memory BFGS method (L-BFGS)
is superior to the method of Buckley and LeNir. They also show that for many
problems the partitioned quasi-Newton method is extremely effective, and is superior
to the limited memory methods. However we find that for other problems the
L-BFGS method is very competitive, in terms of CPU time, with the partitioned
quasi-Newton method.

We briefly review the methods to be tested in Section 2, where we also describe
the problems used in our experiments. In Section 3 we present results that indicate
that the limited memory BFGS method is faster than the method of Buckley and
LeNir (1985), and is better able to use additional storage to accelerate convergence.
In Section 4 we explore ways of improving the performance of the L-BFGS method,
by choosing suitable diagonal scalings, and study its behavior on very large problems
(where the number of variables is in the thousands). In Section 5 we compare the
L-BFGS method with two well-known conjugate gradient methods, paying particular
attention to execution times. In Section 6 we compare the L-BFGS method and the
partitioned quasi-Newton method, and in Section 7 we give a convergence analysis
of the L-BFGS method.

While this work was in progress we became aware that Gilbert and Lemar6chal
(1988) had performed experiments that are similar to some of the ones reported
here. They used a newer implementation by Buckley (1987) of the Buckley-LeNir

D.C. Liu, J. Nocedal / Limited memory BFGS 505

method; this new code is more efficient than the ACM TOMS code of Buckley and

LeNir (1985) used in our tests. Gilbert and Lemar6chal 's implementation of the
L-BFGS method is almost identical to ours. They conclude that the L-BFGS method
performs better than Buckley's new code, but the differences are less pronounced
than the ones reported in this paper.

Our L-BFGS code will be made available through the Harwell library under the
name VA15.

2. Preliminaries

We begin by briefly reviewing the methods tested in this paper.

The method of Buckley and LeNir combines cycles of BFGS and conjugate
gradient steps. It starts by performing the usual BFGS method, but stores the
corrections to the initial matrix separately to avoid using O(n 2) storage. When the

available storage is used up, the current BFGS matrix is used as a fixed precon-
ditioner, and the method performs precondit ioned conjugate gradient steps. These
steps are continued until the criterion of Powell (1977) indicates that a restart is
desirable; all BFGS corrections are then discarded and the method performs a
restart. This begins a new BFGS cycle.

To understand some of the details of this method one must note that Powell 's
restart criterion is based on the fact that, when the objective function is quadratic

and the line search is exact, the gradients are orthogonal. Therefore to use Powell
• . \

restarts, it is necessary that the line search be exact for quadratic objecuve functions,
which means that the line search algorithm must perform at least one interpolation.

This is expensive in terms of function evaluations, and some alternatives are
discussed by Buckley and LeNir (1983).

The method of Buckley and LeNir generalizes an earlier algorithm of Shanno
(1978b), by allowing additional storage to be used, and is regarded as an effective
method (see Dennis and Schnabel, 1987; Toint, 1986).

The limited memory BFGS method (L-BFGS) is described by Nocedal (1980),
where it is called the SQN method. It is almost identical in its implementat ion to
the well known BFGS method. The only difference is in the matrix update: the
BFGS corrections are stored separately, and when the available storage is used up,
the oldest correction is deleted to make space for the new one. All subsequent
iterations are of this form: one correction is deleted and a new one inserted. Another

description of the method, which will be useful in this paper, is as follows. The
user specifies the number m of BFGS corrections that are to be kept, and provides
a sparse symmetric and positive definite matrix Ho, which approximates the inverse
Hessian of f During the first m iterations the method is identical to the BFGS
method. For k > m, Hk is obtained by applying m BFGS updates to /4o using
information from the m previous iterations.

506 D.C. Liu, J. Nocedal / Limited memory BFGS

To give a precise description of the L-BFGS method we first need to introduce

some notation• The iterates will be denoted by Xk, and we define Sk =Xk+I--Xk and
Yk = gk+l--gk. The method uses the inverse BFGS formula in the form

T + Y
Hk+l = VkHkVk pkSkSk, (2.1)

where Pk = 1/YVk&, and

Vk = I -- pkYk sT.

(See Dennis and Schnabel, 1983•)

Algorithm 2.1 (L-BFGS method).

Step 1. Choose Xo, m, 0 < f l ' < ½ , f l ' < /3 < 1, and a symmetric and positive definite
starting matrix /40. Set k = 0.

Step 2. Compute

dk = -- Hkgk, (2.2)

Xk+l = Xk + akdk, (2.3)

where Cek satisfies the Wolfe conditions:

f (x k + akdk) ~< , v ~ f (x k) + [3 akgkdk, (2.4)

g(xk + akdk)T dk >1 flg~'dk. (2.5)

(We always try the steplength ak = 1 first.)
Step3. Let rh = min{k, m - 1}. Update Ho rfi + 1 times using the pairs {y~, s~}~=k_,~,

i.e. let

Hk+l=(V~ ' ' " v T - , ; ,) g o (v k - , ~ " " " V k)

+ P k - & (Y T " T T • • V k _ r h + l) S k r r h S k _ r f l (V k _ , ~ + l ' ' " Vk)

_~ Pk_rfi+l(V ~ T T • • • V ~ - , ~ , + 2) S k - , ~ + , S k _ ~ + , (V k _ ~ + 2 " • • v ~)

"4- pkSkSTk.

Step 4. Set k:= k + 1 and go to Step 2.

(2.6)

We note that the matrices Hk are not formed explicitly, but the lh + 1 previous
values of yj and sj are stored separately. There is an efficient formula, due to Strang,
for computing the product Hkgk (see Nocedal, 1980). Note that this algorithm is
very simple to program; it is similar in length and complexity to a BFGS code that
uses the inverse formula.

This implementation of the L-BFGS method coincides with the one given in
Nocedal (1980), except for one detail: the line search is not forced to perform at
least one cubic interpolation, but the unit steplength is always tried first, and if it

D.C. Liu, J. Nocedal / Limited memory BFGS 507

satisfies the Wolfe conditions, it is accepted. Our aim is that the limited memory
method resemble BFGS as much as possible, and we disregard quadratic termination
properties, which are not very meaningful, in general, for large dimensional
problems.

The partitioned quasi-Newton method of Griewank and Toint assumes that the
objective function has the form

n e

f (x) = ~ f (x) , (2.7)
i ~ l

where each of the ne element functions f depends only on a few variables (more

generally, it assumes that the Hessian matrix of each element function has a low
rank compared with n). The method updates an approximation B~ to the Hessian
of each element function using the BFGS or SR1 formulas. These small dense
matrices, which often contain excellent curvature information, can be assembled to
define an approximation to the Hessian o f f The step is determined by an inexact
linear conjugate gradient iteration, and a trust region is kept to safeguard the length
of the step.

The partitioned quasi-Newton method (PQN) requires that the user supply
detailed information about the objective function, and is particularly effective if the

correct range of the Hessian of each element function is known. Since in many
practical applications the objective function is of the form (2.7), and since it is often
possible to supply the correct range information, the method is of great practical
value. For a complete description of this algorithm, and for an analysis of its

convergence properties see Griewank and Toint (1982a, 1982b, 1984) and Griewank
(1987). The tests of the PQN method reported in this paper were performed with
the Harwell routine rE08 written by Toint (1983b).

2.1. The test problems

The evaluation of optimization algorithms on large scale test problems is more
difficult than in the small dimensional case. When the number of variables is very
large (in the hundreds or thousands), the computat ional effort of the iteration
sometimes dominates the cost of evaluating the function and gradient. However

there are also many practical large scale problems for which the function evaluation
is exceedingly expensive. In most of our test problems the function evaluation is
inexpensive. We therefore report both the number of function and gradient evalu-
ations and the time required by the various parts of the algorithms. Using this
information we will try to identify the classes of problems for which a particular
method is effective.

We have used the 16 test problems as showed in Table 1 with dimensions ranging
from 49 to 10000.

Problems 12, 13 and 15, and the starting points used for them, are described in
Liu and Nocedal (1988). They derive from the problem of determining the square

508 D.C. Liu, J. Nocedal / Limited memory BFGS

Table 1

Set of test problems

Problem Problem's name Reference

1 Penalty I Gill and Murray (1979)
2 Trigonometric Mor6 et al. (1981)
3 Extended Rosenbrock Mor~ et al. (1981)
4 Extended Powell Mor6 et al. (1981)
5 Tridiagonal Buckley and LeNir (1983)
6 QOR Toint (1978)
7 GOR Toint (1978)
8 PSP Toint (1978)
9 Tridiagonal Toint (1983a)

10 Linear Minimum Surface Toint (1983a)
11 Extended ENGVL1 Toint (1983a)
12 Matrix Square Root 1
13 Matrix Square Root 2
14 Extended Freudenstein and Roth Toint (1983a)
15 Sparse Matrix Square Root
16 ults0 Gilbert and Lemar~chal (1988)

roo t of a given matr ix A, i.e. f inding a mat r ix B such that B 2 = A. Fo r all the o ther

p r o b l e m s we used the s t a n d a r d s tar t ing po in ts given in the references. All the runs

r epor t ed in this p a p e r were t e rmina ted when

[Igkll < 10 5 x m a x (1 , IIx~ll), (2.8)

where I1"]] denotes the Euc l i dean norm. We require low accuracy in the so lu t ion

because this is c o m m o n in prac t ica l app l i ca t ions .

Since we have p e r f o r m e d a very large n u m b e r o f tests, we descr ibe the results

ful ly in an a c c o m p a n y i n g repor t (Liu and Noceda l , 1988). In this p a p e r we present

only representa t ive samples and summar i e s o f these results, and the in teres ted r eade r

is referred to that r epor t for a de ta i led desc r ip t ion o f all the tests pe r fo rmed . We

shou ld note that all the comment s and conclus ions made in this p a p e r are based

on da ta p resen ted here and in the a c c o m p a n y i n g report .

3. Comparison with the method of Buckley and LeNir

In this sec t ion we c o m p a r e the me thod of Buckley and L e N i r (B-L) with the L - B F G S

method . In bo th me thods the user specifies the amoun t o f s torage to be used, by

giving a n u m b e r m, which de te rmines the n u m b e r o f mat r ix upda tes that can be

s tored. When m = 1, the m e t h o d o f Buckley and L e N i r reduces to Shanno ' s method ,

and when m = oo both m e t h o d s are ident ica l to the B F G S method . F o r a given value

o f m, the two methods requi re roughly the same amoun t o f s torage, but the L - B F G S

me thod requires s l ightly less a r i thmet ic work pe r i te ra t ion than the B - L me thod (as

i m p l e m e n t e d by Buckley and LeNir , 1985).

D.C. Liu, J. Nocedal / Limited memory BFGS 509

In both codes the line search is terminated when (2.4) and

[g(xk + akdk) T dkl <~ -- [3g~ dk (3.1)

are satisfied ((3.1) is stronger than (2,5), which is useful in practice). We use the
values/3 ' = 10 -4 and/3 = 0.9, which are recommended by Buckley and LeNir (1985),
and are also used by Nocedal (1980). All other parameters in the code of Buckley

and LeNir were set to their default values, and therefore the method was tested
precisely as they recommend. For the L-BFGS method we use a line search routine
based on cubic interpolation, developed by J. Mor6.

In Table 2 we give the amount of storage required by the two limited memory
methods for various values of m and n, and compare it to the storage required by
the BFGS method. For example, for a problem with 50 variables, if m = 5, 660
locations are required by each limited memory method.

Table 2

Storage locations

n m: 5 7 15 BFGS

50 660 864 1680 1425
100 1310 1714 3330 5350

1000 13010 17014 33030 503500

The tests described below were made on a s u n 3/60 in double-precision arithmetic,
for which the unit roundoff is approximately 10 -16. For each run we verified that

both methods converged to the same solution point. We tested three methods: (1)
The combined CG-QN method of Buckley and LeNir (1985) using analytical
gradients; (2) the L-BFGS method; (3) the BFGS method, using the line search
routine of J. Mor6.

The initial Hessian approximation was always the identity matrix, and after one

iteration was completed, all methods update yo/ instead of I, where

T
• o =- y0 So/II yotl 2. (3.2)

This is a simple and effective way of introducing a scale in the algorithm (see Shanno
and Phua, 1978).

In the following tables, P denotes the problem number, N the number of variables
and m the number of updates allowed. The results are reported in the form

number of i terations/number of function evaluations

iteration time/function time/total time

where "iteration t ime" includes the time needed to generate the search direction,
perform the line search and test convergence, but excludes the time to evaluate the
function and gradient. For all methods the number of gradient evaluations equals
the number of function evaluations.

510 D.C. Liu, J. Nocedal / Limited memory BFGS

In Table 3 we compare the performance of the two limited memory methods
when m = 5, 7, 9. Results for m = 15 are given in Table 4, where the runs for the
BFGS method are also included for comparison.

Table 3

Comparison of the two limited memory methods for m = 5, 7, 9

P N Buckley-LeNir L-BFGS

m=5 m=7 m=9 m=5 m=7 m=9

1 1000 19/88 19/87 19/75 45/55 44/54 44/54
74/49/123 79/48/127 95/41/136 147/27/174 179/27/206 215/27/242

2 1000 48/102 44/94 45/96 53/58 55/58 57/59
174/675/849 162/603/765 187/652/839 165/337/502 237/394/631 288/381/669

4 100 52/108 45/98 38/79 106/lll 94/98 57/61
17/7/24 17/6/23 16/4/20 35/3/38 42/5/47 27/2/29

5 100 73/147 72/145 72/145 1 3 4 / 1 6 8 1 2 6 / 1 4 7 111/131
52/13/65 70/11/81 82/12/94 43/14/57 55/10/65 51/17/68

7 50 82/165 81/163 79/160 1 6 2 / 1 6 4 1 4 8 / 1 5 0 150/152
15/48/63 21/47/68 17/44/61 25/50/75 35/40/75 39/41/80

10 961 171/343 1 8 3 / 3 6 7 1 7 2 / 3 4 6 1 6 8 / 2 8 0 1 6 7 / 2 7 4 163/267
526/782/ 549/858/ 544/806/ 516/630/ 669/606/ 680/610/
1308 1407 1350 1146 1275 1290

11 1000 14/42 15/44 13/40 36/42 35/41 34/40
55/38/93 72/38/110 71/35/106 116/37/153 139/35/174 162/35/197

12 100 231/467 2 3 5 / 4 7 8 2 2 5 / 4 5 2 2 5 4 / 2 6 0 2 4 5 / 2 5 1 246/252
161/531/692 175/535/710 180/507/687 93/145/238 112/146/258 133/149/282

In each box, the two numbers in the top represent iterations/function-evaluations, and the three
numbers below give iteration-time/function-time/total-time.

Tables 3 and 4 give only a small sample of our results, but it is representative of
what we have observed (see Liu and Nocedal, 1988). We see that the BFGS method
usually requires the fewest function calls, and that for some problems, L-BFGS
approaches the performance of the BFGS method. For other problems, however,

there remains a gap in terms of function calls, between the BFGS and L-BFGS. In
Table 5 we summarize the performance of the two limited memory methods on our
whole set of problems, as measured by the number of function evaluations. We give
the number of wins, i.e. the number of runs for which a method required fewer
function calls than the other one.

We see from these results that the L-BFGS method usually requires fewer function
calls than the method of Buckley and LeNir (B-L). This is also true if we consider
only problems with a very large number of variables (n ~- 1000). Only for m = 3 are

the two methods comparable, and we see that as m increases, the differences between
the two become large. To investigate the reason for this, we measure in Figures 1
and 2 the effect of increasing the storage. We define "speed-up" to be the ratio
N F U N (m = 3) / N F U N (m = 7), where N F U N (m = s) denotes the number of func-

D.C. Liu, J. Nocedal / Limited memory BFGS

Table 4

Limited memory methods using m = 15, and the BFGS method

511

P N Buckley-LeNir L-BFGS BFGS

m=15 m=15

1 1000 19/84 44/54 44/54
164/54/218 308/30/338

2 1000 52/110 54/56 54/56
278/727/1005 392/359/751

4 100 42/87 46/50 41/45
24/6/30 33/3/36

5 100 71/143 110/124 72/77
108/16/124 86/9/95

7 50 147/148 127/129 121/123
130/42/172 51/37/88

10 961 170/341 155/255 147/238
612/810/1422 934/578/1512

11 1000 13/40 29/35 29/35
99/35/134 186/32/218

12 100 229/464 263/269 179/185
189/533/722 222/161/383

Table 5

Number of wins on the whole set of problems

Method m =3 m = 5 m =7 m =9 m = 15 Total

B-L 13 10 5 4 8 39
L-BFGS 17 20 24 26 22 110

Number
of 20

Problems

1 1

n
.9 1 1.1 1.5 1.8

Fig. 1. Speed-up, NFUN(3)/NFUN(7), for B-L method.

Speed-up

512 D.C. Liu, J. Nocedal / Limited memory BFGS

Number
of

Problems

10

5

i 111 111
Hflm HDH

.9 1.1 1.2 1.3 1.4 1.5 1.6 3.2 3.5 4.6 Speed-up

Fig. 2. Speed-up, NFUN(3)/NFUN(7), for L-BFGS method.

tion evaluations needed when m = s. Thus if the speed-up is near I the method does

not gain much from additional storage, whereas a large number means a substantial

improvement. In the tables we give the number of test problems for which a certain

speed-up was obtained.
The method of Buckley and LeNir gives little or no speed-up in most of the

problems. This is very disappointing because m = 7 represents a substantial increase

in storage. (The picture is only a slightly better if we define speed-up as

NFUN(3) /NFUN(15) .) In contrast, the L-BFGS method gives a substantial speed-

up in 70% of the problems. We have observed that the L-BFGS method usually

reduces the number of function calls as storage is increased, and that this property

is true both for medium size and large problems (Liu and Nocedal, 1988). These

observations agree with the experience of Gilbert and Lemar6chal (1988).
In our view the method of Buckley and LeNir is not able to use increased storage

effectively for the following reason. During the CG cycle, the method uses all m

corrections to define the preconditioner. However the restarts are usually performed

after only a few iterations of this cycle, and the m corrections are discarded to begin

the BFGS cycle. The average number of corrections used during the BFGS cycle is

only ½(m+l), since corrections are added one by one. Indeed, what may be
particularly detrimental to the algorithm is that the first two or three iterations of
the BFGS cycle use a small amount of information. We should add that the relatively

accurate line searches performed by the implementation of Buckley and Lenir (1985)

also contribute to the inefficiency of the method (this, however, has been corrected

in a recent update of the method; see Buckley, 1987).

In practice we would rarely wish to use m greater than 15. However it is interesting

to observe the behavior of the L-BFGS method when storage is increased beyond

this point. In Table 6 we give the results of using the L-BFGS method with

m --- 15, 25, 40.

Again we see that the number of function calls usually decreases with m, but the

gain is not dramatic. The problems given in Table 6 are of medium size, but similar

results where obtained when the number of variables was large (n ~ 1000).

So far we have concentrated only on the number of function calls, but as we have

mentioned earlier, there are practical large scale problems for which the function

D.C. Liu, J. Nocedal / Limited memory BFGS

Table 6

The L-BFGS method with a large amount of storage

513

P N L-BFGS

m = 15 m = 25 m =40

4 100 46/50 41/45 41/45
33/3/36 36/2/38 43/2/45

5 100 110/124 109/115 96/104
86/9/95 137/7/144 167/5/172

7 50 127/129 133/135 122/124
51/37/88 82/37/119 107/34/141

10 121 43/49 42/48 41/47
33/16/49 36/16/52 41/14/55

11 100 31/37 30/36 30/36
21/2/23 22/4/26 24/4/28

12 100 263/269 235/24l 220/226
222/161/383 301/135/436 420/126/546

and gradient evaluation is inexpensive. We will therefore now consider the number
of iterations and the total amount of time required by the two limited memory

methods. From Tables 3 and 4 we see that the method of Buckley and LeNir usually

requires fewer iterations; when using CPU time as a measure, there is no clear

winner. We therefore cannot conclude that the L-BFGS method, as implemented

so far, is superior to the method of Buckley and LeNir for problems in which the

function evaluation is cheap. However there is a simple way to improve the L-BFGS
method in this case.

First, we note that the reason Buckley and LeNir's method requires fewer iterations

is that it performs a more accurate line search. The implementation recommended

by Buckley and LeNir (1985), i.e. the one obtained by setting all parameters to their

default values, ensures that at least one cubic interpolation is applied at every

iteration of the algorithm, which usually results in a very good estimate of the one

dimensional minimizer. It is therefore natural to perform a more accurate line search

in the L-BFGS method in order to decrease the number of iterations. In Table 7
we give the results for the L-BFGS method, when the line search is forced to perform
at least one cubic interpolation.

For most problems the number of iterations is markedly reduced (compare Tables

3 and 7). We now compare this implementation of the L-BFGS method with the

method of Buckley and LeNir, and for simplicity we will use total CPU time as a

measure. In Table 8 we give the number of wins, i.e. the number of runs for which

a method required less time than the other one, on our whole set of problems.
This Table shows that the L-BFGS method is faster on most of the problems.

Furthermore an examination of the results given in Liu and Nocedal (1988) shows

that the differences are very substantial in many cases. We conclude from these

experiments that the L-BFGS method should have two options: (i) when the function

514 D.C. Liu, J. Nocedal / Limited memory BFGS

Table 7

L-BFGS method with a more accurate line search

L-BFGS

P N m = 5 m = 9 P N m = 5 m = 9

1 1000 16/46 16/46 7 50 97/195
45/27/72 66/27/93 15/57/72

2 1000 44/89 44/89 12 100 229/461
137/589/726 218/580/798 81/261/342

11 1000 19/41 18/39 10 961 172/347
60/37/97 77/36/123 512/77/1289

91/183
25/53/78

222/447
132/248/380
157/317
770/729/1499

Table 8

Number of wins - -count ing total time

Method m = 5 m = 9 Total

B-L 5 6 11
L-BFGS 24 24 48

and gradient evaluation is expensive, the method should perform an inaccurate line
search, like the one described earlier in this section; (ii) otherwise it should perform
a more accurate line search, by forcing at least one interpolation, or by using a
small value for the parameter/3 in (3.1).

For the rest of the paper we will consider only the L-BFGS method, since we
have seen that it outperforms the method of Buckley and LeNir.

4. Scaling the L-BFGS method

It is known that simple scalings of the variables can improve the performance of
quasi-Newton methods on small problems. It is, for example, common practice to
scale the initial inverse Hessian approximation in the BFGS method by means of
formula (3.2). For large problems scaling becomes much more important (see Beale,
1981; Griewank and Toint, 1982a; Gill and Murray, 1979). Indeed, Griewank and
Toint report that a simple scaling can dramatically reduce the number of iterations
of their partitioned quasi-Newton method in some problems. We have observed
that this is also the case when using limited memory methods, as we shall discuss
in this section.

In the basic implementation of the L-BFGS method given in Algorithm 2.1, the
initial matrix /40, or its scaled version 7oH0, is carried throughout the iterations.
So far we have assumed only that/4o is sparse, and in our test we have set it to the
identity matrix. The choice o f / 4 o clearly influences the behavior of the method,

D,C. Liu, J. Nocedal / Limited memory BFGS 515

and a natural question is how best to choose it. If the objective function is mildly
nonlinear and if the diagonal entries of the Hessian are all positive, an excellent

choice would be to let /40 be the diagonal of the inverse Hessian matrix at xo. In
general, however, it is preferable to change this matrix as we proceed, so that it

incorporates more up-to-date information. Let us therefore replace the matrix /4o

in (2.6) by H~k °), and consider strategies for computing this matrix at every step.

One simple idea is to use the scaling (3.2) at each iteration and set

H20) = ykHo, (4.1)

where Vk =y~Sk/[lYkll 2" Another possibility is to try to find a diagonal matrix that

approximately satisfies the secant equation with respect to the last m steps. Let xk

be the current iterate, and assume that k > m. We find the diagonal matrix Dk which

minimizes

I]Dk Yk_,-- Sk_,HF, (4.2)

where [I'IIF denotes the Frobenius norm, and Yk ~=[Yk 1,- .- ,Yg-m],Sk-~ =
[Sk-1, - • . , Sk-,~]. The solution is Dk ~ diag(d~) where

i i i i dik_Sg I Y k - 1 ~- " ' " -~- S k - m Y k m
i + , i ~2 , i = l , . . . , n . (4.3)

(Y k 1) 2-~- " ' " ~Yk m)

Since an element dR can be negative or very close to zero, we use the following

safeguard: formula (4.3) is used only if the denominator in (4.3) is greater than
10 -1°, and if all the diagonal elements satisfy d~ c [10-2Tk, 102Tk]; otherwise we set

d~ = Yk.
We have tested the L-BFGS method using the following scalings.

Scaling MI: H(~ °)= Ho (no scaling).

Scaling M2: H(k °)= yoHo (only initial scaling).

Scaling M3: H(k °)= ykHo.
Scaling M4: Same as M3 during the first m iterations. For k > m, H(k °) = Dk ; see

(4.3).
In Table 9 we give the performance of these scalings on a few selected problems.

Ho was set to the identity matrix, and the method used m = 5. The results were also
obtained in a SUN 3/60.

Note the dramatic reduction of function evaluations given by M3 and M4, with

respect to M1. We have ranked the performance of the four scalings on each of our

test problems, and tallied the rankings for all the problems. The result of such a

tally is presented in Tables 10 and 11.
We can see from these tables that M3 and M4 are the most effective scalings. We

performed the same tests using m = 9 corrections and the results are very similar.

M4 seldom required safeguarding; this was needed in only about 5% of the iterations.

Our numerical experience appears to indicate that these two scalings are comparable

in efficiency, and therefore M3 should be preferred since it is less expensive to

implement.

516 D.C. Liu, J. Nocedal / Limited memory" BFGS

Table 9

The L-BFGS method with different scalings, when m ~ 5

P N M1 M2 M3 M4

1 1000 34/72 45/55 26/35
111/35/146 147/27/174 87/18/105

2 1000 51/54 53/58 48/50
165/330/495 1 6 5 / 3 3 7 / 5 0 2 160/329/489

7 50 89/179 162/164 111/119
14/52/66 25/50/75 18/34/52

10 961 214/569 168/280 190/197
674/1318/1992 516/630/1146 592/435/1027

11 1000 35/83 36/42 15/22
112/71/183 116/37/153 45/18/63

12 100 233/482 254/260 308/322
78/286/364 93/145/238 110/183/293

16 403 41/41 26/26 24/27
61/1205/1266 36/806/842 35/825/860

29/39
114/20/134
50/55

175/332/507
119/121
25/35/60

174/179
544/405/949

16/22
54/20/74

263/270
109/151/260
26/26
38/808/846

Table 10

Relative performance of scaling methods, counting func-
tion calls, on all problems, when m = 5

M1 M2 M3 M4

Best 0 3 12 10
2nd 6 2 6 7
3rd 4 12 4 t
Worst 12 5 0 4

Table 1 l

Realative performance of scaling methods, counting
CPU time, on all problems, when m - 5

M1 M2 M3 M4

Best 4 6 8 6
2nd 8 0 7 8
3rd 3 8 6 2
Worst 7 8 1 6

T h e r e a re m a n y o t h e r s t ra teg ies for d y n a m i c a l l y c o m p u t i n g sca l ings . Gi l l a n d

M u r r a y (1979) h a v e s u g g e s t e d a sca l ing b a s e d on r e c u r r i n g the d i a g o n a l o f the

H e s s i a n a p p r o x i m a t i o n p r o d u c e d by the d i r ec t B F G S f o r m u l a . I n o u r tests this

f o r m u l a p e r f o r m e d wel l s o m e t i m e s , bu t was very inef f ic ien t in m a n y p r o b l e m s . Its

b e h a v i o r s e e m e d errat ic , e v e n i f o n e i n c l u d e d the s a f e g u a r d s sugges t ed by Gi l l a n d

M u r r a y , a n d t h e r e f o r e we do n o t r epo r t t he se resul ts . It m a y be ve ry f ru i t fu l to

D.C. Liu, J. Nocedal / Limited memory BFGS 517

study other dynamic scaling s t ra teg ies - -perhaps this is one of the most impor t an t

topics of future research in large scale opt imizat ion.

4.1. Solving very large problems

The largest problems considered so far have 1000 variables. To be able to perform

a complete set of tests with larger problems, we had to use a more powerful mach ine

than the SUN 3/6O. In Table 12 we describe the per formance of the L-BFGS method

on problems with 5000 and 10000 variables, us ing the All iant Fx/s at Argonne

Nat iona l Laboratory. Double precisio n ar i thmetic in this machine has a uni t round-

off of approximate ly 10 -16 . The results are reported in the form:

number of iterations/number of function evaluations

total time

We see that increasing the storage beyond m = 5 has little effect on the n u m b e r

of func t ion evaluat ions, in most of the problems. An improvement is more not iceable

if one uses scalings M1 or M2, but the change is still small. We have observed, in

general, that when solving very large problems, increasing the storage from m = 5

Table 12

L-BFGS method with scaling strategy M3

P N m=3 m=5 m=9 m=15 m=40

1 5000 31/46 30/45 30/45 30/45 30/45
48 48 80 105 109

1 10000 37/52 35/50 35/50 35/50 35/50
117 142 199 263 289

2 5000 50/53 44/49 46/48 45/48 42/45
96 105 148 192 218

2 10000 44/46 41/43 42/44 41/43 40/42
168 195 273 347 394

3 5000 34/52 33/48 35/50 35/50 35/50
52 64 96 127 141

3 10000 34/52 33/48 35/50 35/50 35/50
105 130 195 258 284

4 5000 78/99 52/61 48/58 49/55 44/49
119 102 135 191 222

4 10000 183/224 52/61 50/61 53/60 51/56
565 207 289 427 612

11 5000 15/22 15/22 15/22 15/22 15/22
24 28 34 34 34

11 10000 15/22 14/21 14/21 14/21 14/21
47 53 63 61 61

15 4999 150/157 1 4 7 / 1 5 6 1 4 6 / 1 5 2 1 4 3 / 1 5 2 142/150
387 457 597 795 1500

15 10000 149/160 1 4 9 / 1 5 7 1 4 4 / 1 5 3 1 4 0 / 1 4 7 145/154
784 932 1200 1570 3130

518 D.C. Liu, J. Nocedal / Limited memory BFGS

or rn = 7 gives only a marginal improvement of performance. Gilbert and Lemar6chal
(1988) report similar results. The reason for this is not clear to us. Note, from Table
12, that in all problems the number of iterations needed for convergence is much

smaller than the dimension n. In fact, for several problems the number of iterations
is a small multiple of m, which would lead one to believe that the value of m is
significant. We feel that an explanation of this requires further research.

5. Comparison with conjugate gradient methods

At this point it is reasonable to ask whether the L-BFGS method, using a scaling
such as M3, is faster in terms of CPU time than some of the well-known conjugate
gradient methods. We tested three methods: (1) the algorithm C O N M I N developed

by Shanno and Phua (1980); (2) the conjugate gradient method (CG) using the
Polak-Ribi6re formula (see, for example, Powell, 1977), restarting every n steps,
and wi th /3 ' - - 10 -4 and/3 =0.1 in (2.4) and (3.1); (3) the L-BFGS method M3, for
which we tried both accurate and inaccurate line searches. By an accurate line

search we mean one in which at least one interpolation was forced; an inaccurate
line search does not enforce it. The results are presented in the form

number of iterations/number of function evaluations

iteration time/function time/total time

Tables 14 and 15 summarize the results of Table 13. The performance in terms

of function calls is as expected: L-BFGS with inaccurate line search is best, CON-

M I N is second and CG is worst.
Some of the timing results of Table 13 are very surprising. The CG method is in

general faster than C O N M I N . The best timings of L-BFGS are obtained when

m = 3; in this case its performance is only slightly better than that of the CG method.
Examining the results of Table 13 closely we observe that in most of our problems

the function and gradient evaluation is inexpensive, which explains why the times
of CG are good in spite of its large number of function evaluations. However for
a few problems, notably problem 16, the function and gradient are very expensive
to compute. We see that in this case the L-BFGS method with an inaccurate line

search is much better than CG.
We conclude that the L-BFGS method performs well in comparison with the two

conjugate gradient methods, both for expensive and inexpensive objective functions.
We also conclude that for large problems with inexpensive functions the simple CG
method can still be considered among the best methods available to date. Based on
our experience we recommend to the user of Harwell code VATS, which implements
the M3 L-BFGS method, to use low storage and accurate line searches, when

function evaluation is inexpensive, and to set 3 ~ m ~< 7 and use an inaccurate line

search when the function is expensive.

D.C.. Liu, J. Nocedal / Limited memory BFGS

Table 13

CONMIN, CG and L-BFGS methods

519

P N CONMIN CG L-BFGS (M3)

Normal line s e a r c h Accurate line search

m=3 m=5 m=3 m=5

1 100 7/15
2/1/3

1 1000 11/23
39/14/53

2 100 46/98
16/67/83

2 1000 47/100
167/653/820

3 100 21/54
7/3/10

3 1000 30/74
107/26/133

4 100 47/95
16/4/20

4 1000 41/83
147/48/195

5 100 74/149
27/11/38

5 1000 280/561
1010/418
1428

6 50 23/47
5/2/7

7 5O 105/213
20/57/77

8 50 84/173
16/7/23

9 100 72/145
26/11/37

9 1000 275/551
1000/405
1405

10 121 49/99
21/25/46

10 961 163/329
610/731
1341

11 100 14/29
5/3/8

11 1000 13/27
47/25/72

12 i00 231/466
90/278/368/

13 I00 200/403
74/235/309

16 403 25/52
36/1520
1556

9/39 16/21 16/21 7/18 7/18
1/2/3 3/1/4 3/1/4 2/1/3 2/I/3
11/58 28/37 26/35 12/32 12/32
15/44/59 64/23/87 87/18/105 27/17/44 40/18/58
47/108 52/56 50/57 43/88 44/89
8/73/81 12/35/47 15/37/52 10/59/69 13/59/72
46/102 49/54 48/50 49/99 46/94
73/664/737 110/334/444 160/329/489 108/654/762 153/614/767
23/78 34/52 33/48 29/70 31/73
4/5/9 7/2/9 9/2/11 6/4/10 8/4/12
23/78 34/52 33/48 29/70 31/73
38/29/67 78/19/97 105/17/122 66/25/91 98/26/124
125/287 70/89 46/54 33/70 25/54
18/19/37 17/3/20 15/2/17 8/3/11 7/2/9
205/465 76/100 50/58 34/72 37/79
330/230/560 174/55/229 176/30/206 76/34/110 130/44/174
75/151 1 2 9 / 1 4 1 1 0 9 / 1 1 4 73/147 74/149
11/11/22 30/8/38 37/9/46 17/10/27 25/10/35
280/561 4 5 9 / 4 8 3 4 2 2 / 4 4 3 2 8 1 / 5 6 3 281/563
440/418 1056/348 1530/320 6 4 6 / 4 2 0 1018/420
858 1404 1850 1066 1438
23/47 37/42 34/38 23/47 23/47
2/2/4 4/2/6 5/1/6 2/2/4 3/2/5
92/186 1 1 6 / 1 2 4 1 1 1 / 1 1 9 87/175 90/181
8/54/62 14/35/49 18/34/52 10/52/62 14/53/67
83/211 1 1 0 / 1 3 5 1 0 1 / 1 2 0 91/190 83/169
7/9/16 14/6/20 17/5/22 11/9/20 15/7/22
73/147 1 1 2 / 1 1 9 1 0 5 / 1 1 2 73/147 72/145
12/11/23 26/7/33 36/7/43 17/12/29 23/11/34
275/551 4 2 3 / 4 5 1 3 6 7 / 3 8 7 2 7 6 / 5 5 3 276/553
437/405 9 7 2 / 3 2 8 1324/284 6 3 2 / 4 0 9 938/407
842 1300 1608 1041 1345
45/91 49/52 47/51 42/87 42/87
8/22/30 13/12/25 17/12/29 11/20/31 13/22/35
186/379 2 0 1 / 2 0 6 1 9 0 / 1 9 7 1 6 5 / 3 3 8 165/339
280/886 4 4 4 / 4 6 8 5 9 2 / 4 3 5 3 6 4 / 7 4 0 510/746
1166 912 1027 1104 1256
18/47 18/25 15/21 17/37 15/33
3/4/7 4/1/5 4/1/5 4/4/8 4/4/8
18/49 15/22 15/22 15/33 14/31
29/43/72 34/20/54 45/18/63 34/27/61 43/27/70
239/482 2 7 2 / 2 8 8 3 0 8 / 3 2 2 2 3 6 / 4 7 5 234/471
38/290/328 63/165/228 110/183/293 54/281/335 79/280/359
225/454 2 9 0 / 3 0 8 2 8 1 / 2 8 9 2 1 7 / 4 3 5 224/449
35/254/289 66/182/248 98/161/259 50/240/290 76/243/319
25/52 27/29 24/27 25/50 25/50
16/1518 25/871 35/825 2 3 / 1 4 9 4 34/1501
1534 896 860 1517 1535

520 D.C. Liu, J. Nocedal / Limited memory BFGS

Table 14

Relative performance of CONMIN, CG and L-BFGS methods, counting function
calls

CONMIN CG L-BFGS (M3)

Normal Accurate

m=3 m =5 m = 3 m =5

Best 2 0 2 19 0 1
2nd 0 0 16 1 3 2
3rd 10 3 1 1 8 7
4th 3 0 1 1 4 7
5th 5 4 2 0 7 5
Worst 2 15 0 0 0 0

Table 15

Relative performance of CONMIN, CG and L-BFGS methods, counting CPU time

CONMIN CG L-BFGS (M3)

Normal Accurate

m=3 m=5 m=3 m=5

Best 1 9 10 2 4 2
2nd 1 0 2 7 8 1
3rd 2 6 4 2 5 5
4th 4 3 3 4 5 6
5th 4 2 3 2 0 6
Worst 10 2 0 5 0 2

6. Comparison with the partitioned quasi-Newton method

W e n o w c o m p a r e the p e r f o r m a n c e o f the L - B F G S m e t h o d wi th tha t o f the p a r t i t i o n e d

q u a s i - N e w t o n m e t h o d (P Q N) o f G r i e w a n k a n d Toin t , wh ich is a lso d e s i g n e d for

so lv ing l a rge p r o b l e m s . T h e P Q N m e t h o d is d e s c r i b e d in de ta i l in G r i e w a n k and

T o i n t (1984), and the c o d e VE08 i m p l e m e n t i n g it has b e e n p u b l i s h e d by T o i n t (1983b).

W e will o n l y d iscuss o n e f ea tu r e o f the a l g o r i t h m tha t is i m p o r t a n t in p rac t ice .

S u p p o s e tha t one o f the e l e m e n t f u n c t i o n s in (2.7) is o f the f o r m

f~(x) (x, 2 3 = - x 2) +x3 .

E v e n t h o u g h f d e p e n d s on th ree va r i ab les , the r a n k o f its H e s s i a n ma t r ix is o n l y

two. O n e can i n t r o d u c e the l i n e a r t r a n s f o r m a t i o n o f va r i ab le s Yl = x l - x 2 , Y2 = x3,

so tha t this e l e m e n t f u n c t i o n d e p e n d s on on ly two var iab les . In VE0S the use r m u s t

spec i fy the e l e m e n t f u n c t i o n , a n d is g iven the o p t i o n o f p r o v i d i n g a ru le fo r r e d u c i n g

D.C. Liu, J. Nocedal / Limited memory BFGS 521

the number of variables on which this function depends. Two of our test problems

allow for a variable reduction, and since we believe that in some cases the user may

not wish (or may not be able) to supply the variable reduction rule, we tested the
PQN method with and without this option.

Two choices for the starting matrix were used in the PQN method: the identity
T matrix scaled at the end of the first iteration by the dual of (3.2), o'=yoso/ l lSol l 2

(B0 = crI), and the Hessian matrix at Xo, estimated by finite differences (Bdifr). The
L-BFGS method was run using the scaling M3, storing m = 5 corrections. Stg stands

for the amount of storage required by each method, "it" denotes the number of

iterations, and nf the number of function/gradient calls. We report three times:

iteration-time/function-time/total-time. The runs were performed on a sun 3/60.

In Table 16 we compare the two methods on two problems that allow for variable

reduction, and take advantage of this in the PQN method.

Table 16

Partioned quasi-Newton method with variable reduction, and L-BFGS method with M3 scaling and m = 5

P N PQN L-BFGS

B 0 = ~I B 0 = Bdi ~

Stg it/nf time it/nf time Stg it/nf time

9 100 1005 3/5 5/1/6 3/5 5/1/6 1310 105/112 36/7/43
9 1000 10005 3/5 49/4/53 4/6 57/5/62 13010 367/387 1324/284/1608

10 121 1696 10/13 26/2/28 10/17 26/3/29 1583 47/51 17/12/29
10 961 14656 15/22 834/19/853 15/26 830/24/854 12503 190/197 529/435/964

In these two problems the PQN method is vastly superior, in terms of function
evaluations, to the L-BFGS method. We see that the additional information supplied

to the PQN method has been used very effectively. Note that the storage requirements

of the two methods are similar. In terms of CPU time the advantage of PQN is less

dramatic: PQN is much faster for problem 9, but the two methods have comparable

times for the linear minimum surface problem (problem 10).

Table 17 compares the two methods on several other problems. We include the

two problems used in Table 16, but this time the PQN method did not use variable
reduction.

The L-BFGS method is very competitive in these problems, in terms of computing

time. Even though it usually requires more iterations, this is offset by the low cost

of computing the search direction. On the other hand, in terms of function evalu-

ations, the PQN method is clearly the winner. Problem 12 does not really belong

in this Table because its Hessian matrix is dense, and therefore it is not suitable

for the PQN method. We have included it, however, to show what happens when

522 D.C. Liu, J. Nocedal / Limited memory BFGS

Table 17

PQN and L-BFGS on several other problems

P N PQN L-BFGS

Bo = trl B o = Bditr

Stg it/nf time it/nf time Stg it/nf time

3 100 906 19/34 8/3/11 40/55 23/4/27 1310 33/48 9/2/11
3 1000 9006 19/34 106/13 40/55 231/15 13010 33/48 105/17

119 246 122
4 100 987 39/46 29/4/33 31/39 24/2/26 1310 46/54 15/2/17
4 1000 9762 42/49 317/26 31/39 228/18 13010 50/58 176/30

343 246 206
9 100 1203 12/14 16/1/17 4/7 7/1/8 1310 105/112 36/7/43
9 1000 12003 12/14 157/10 8/11 96/8 13010 367/387 1324/284

167 104 1608
10 121 2396 28/40 88/3/91 10/19 57/2/59 1583 47/51 17/12/29
10 961 20956 73/107 3373/106 15/28 1411/28 12503 190/197 529/435

3479 1439 964
11 100 1200 12/18 13/1/14 9/12 8/1/9 1310 15/21 4/1/5
11 1000 12000 10/16 95/12/107 9/12 79/8/87 13010 15/22 45/18/63
12 100 23357 95/109 14828/43 116/183 21216/74 1310 308/322 110/183

14871 21290 293
14 100 1200 23/30 23/4/27 10/13 12/1/13 1310 21/28 5/6/11
14 1000 12000 19/25 180/48 10/13 96/24 13010 18/26 54/58

228 120 112
15 100 2643 23/32 103/4/107 25/53 77/5/82 1310 63/71 22/15/37
15 1000 26643 34/58 1032/176 47/88 1431/266 13010 106/113 385/230

1208 1697 615

a problem like this is solved by the PQN method: the results are very poor. This
problem has an objective function that may appear at first to be partially separable,
and it requires some attention to notice that the Hessian matrix is, in fact, dense.

To analyze these results further, we give in Table 18 more information about the
test problems. The number of element functions is denoted by ne. The number o f
variables entering into the element functions is nve, and nve-vr is the number
obtained after applying variable reduction. Using the results o f Table 17, we give
the average time required to perform an iteration (it-time). For the PQN method
we have used the results corresponding to Bo = ~r/, and we recall that the L-BFGS
method used scaling M3 and m = 5.

The iteration time of the L-BFGS method is, o f course, quite predictable (it is a
function o f n). We observe large variations in the iteration time of PQN: for most
problems it is 2 to 5 times larger than that of L-BFGS. However for problem 10
(minimum surface problem without variable reduction) and problem 15 (sparse
matrix square root problem) the PQN iteration time is 10 to 15 times that of L-BFGS.

The PQN method usually requires less storage than L-BFGS with m = 5, except
for problem 15, where PQN requires twice as much storage. Note that in this problem

D.C. Liu, J. Nocedal / Limited memory BFGS

Table 18

Separability of the objective functions, and average iteration time

523

P N ne nve nve-vr PQN L-BFGS
it-time it-time

3 100 50 2 2 0.42 0.27

3 1000 500 2 2 5.58 3.18
4 100 33 4 4 0.74 0.33

4 1000 333 4 4 7.55 3.52

9 100 100 2 1 1.33 0.34
9 1000 1000 2 1 13.1 3.61

10 121 100 4 2 3.14 0.36

10 961 900 4 2 46.21 2.78
11 100 99 2 2 1.08 0.27

11 1000 999 2 2 9.5 3.0

14 100 99 2 2 1.0 0.24

14 1000 999 2 2 9.47 3.0

15 100 164 5 5 4.48 0.35
15 1000 1664 5 5 30.35 3.63

the element functions depend on 5 variables. It thus appears from these results that
the PQN method becomes less attractive when the number of variables entering
into the element functions is greater than 4 or 5.

7. Convergence analysis

In this section we show that the limited memory BFGS method is globally convergent
on uniformly convex problems, and that its rate of convergence is N-linear. These
results are easy to establish after noting that all Hessian approximations Hk are
obtained by updating a bounded matrix m times using the BFGS formula. Because
we prefer to analyze the direct BFGS formula, in what fol lows we assume that the
algorithm updates Bk-- the inverse of Hk.

Algorithm 7.1 (General limited memory BFGS algorithm).
Step 1. Choose Xo, m, 0 </3' < ½, 13' < 13 < 1, and a symmetric and positive definite

starting matrix Bo. Set k = 0.
Step 2. Compute

dk = --Bklgk, (7.1)

Xk+l = Xk + akdk, (7.2)

where ak satisfies (2.4) and (2.5).
Step 3. Let rh = min{k + 1, m}, and define a symmetric and positive definite matrix

B~ °). Choose a set o f increasing integers ~k -- {Jo , . . - ,J,~-~} - { 0 , . . . , k}. Update

524 D.C. Liu, J. Nocedal / Limited memory B F G S

S lrh--I B(k °3 rh times using the pairs {Yjt, j~Jz=o , i.e. for l = 0 , . . . , r f i - 1 compute

i1(I)~ oT lT(I) T
B(k/+l) = B(kt) ~ k Ojl~jll'nk ~ Y j lY j l

oT i s (I) ~
~j l~ ' k '~jl " y~tsj!

Set Bk+~ = B(k a), k := k + 1, and go to Step 2.

(7.3)

There are many possible choices of B~ °~ in Step 3 as discussed in Section 4. For
example we could have B~ °~= Bo, or B~ °~= Bo/yk. We will assume only that the
sequence of matrices B~ °~, and the sequence of their inverses, are bounded. Since
the elements of ~?k defined in Step 3 form an increasing sequence, Algorithm 7.1
is identical to the BFGS method when k < m. For k ~> m, 5fk can be chosen without
this monotonicity restriction, but this may not be advantageous in practice. Note
that Algorithms 2.1 and 7.1 are mathematically equivalent. In our code we implement
Algorithm 2.1 because it allows us to avoid storing a matrix; Algorithm 7.1 is given

only for the purposes of the analysis.
We make the following assumptions about the objective function. The matrix of

second derivatives o f f will be denoted by G.

Assumptions 7.1. (1) The objective function f is twice continuously differentiable.
(2) The level set D = {x E ~n: f (x) ~<f(x0)} is convex.
(3) There exist positive constants Ml and M= such that

M, Ilzll2 ~ S G (x) z ~ M2llzll = (7.4)

for all z c ~" and all x c D. Note that this implies that f has a unique minimizer x ,
in /9 .

Theorem 7.1. Let xo be a starting point .for which f satisfies Assumptions 7.1, and
assume that the matrices B~ °~ are chosen so that {llB(k°)lt} and {IIB~°)-'II} are bounded.

Then for any positive definite Bo, Algorithm 7.1 generates a sequence {xg} which

converges to x , . Moreover there is a constant 0 <~ r < 1 such that

fk - f , <~ rk[fo - - f ,] , (7.5)

which implies that {xk} converges R-linearly.

Proof. I f we define

fo 1 G~ = G(xk + "rsk) d~',

then

(7.6)

Yk = Gksk. (7.7)

D.C. Liu, J. Nocedal / Limited memory BFGS

Thus (7.4) and (7.7) give

M 1 [[Sk II 2 ~ yTksk <~ M 2 [[Sk II 2,

and

525

(7.8)

It is possible to prove this result for several other line search strategies, including
backtracking, by adapting the arguments of Byrd and Nocedal (1989, proof of
Theorem 3.1). Note from (7.4), (7.9) and (4.1) that M~ <~ Yk <~ M2. Thus the L-BFGS
method using strategy M3 satisfies the conditions of Theorem 7.1.

One can implement the method of Buckley and LeNir so that it is n-step
quadratically convergent on general problems, which implies an ~-superlinear rate

IlYkll: s~G2kS~< M2" (7.9)
yTsk -- T - S k GkSk

Let tr(B) denote the trace of B. Then from (7.3), (7.9) and the boundedness of
{]]B~°>H},

tr(Bk+,) <~ tr(B~ °~) + ~- ' IlYj, II 2 < ~ t r (Bf)) + triM2 <~ M3, (7.10)
l~O YjlSj!

for some positive constant M3. There is also a simple expression for the determinant
(see Pearson, 1969; Powell, 1976),

T
~-' yj, sj, ~- 'y f s j , s~sjs (7.11) det(Bk+,)=det(B~k°~) [1 ~Tu~l~o =det(B~°~) ~ T.,~l~,."
I~O ~jlL~k ,3jl l~O S.~lSjl Sjll~ k Ojl

Since by (7.10) the largest eigenvalue of B(g ~ is also less than M3, we have, using
(7.8) and the boundedness of {llB~°~-~[[},

det(Bk+,) ~ det(B(g°~)(M,/ M3) ~ >- M4, (7.12)

for some positive constant M4. Therefore from (7.10) and (7.12) we conclude that
there is a constant 6 > 0 such that

s~Bksk
COS Ok --{{Skll iiBkSkll ~ t~. (7.13)

One can show that the line search conditions (2.4)-(2.5) and Assumptions 7.1 imply
that there is a constant c > 0 such that

f(xk+,) - - f (x ,) <~ (1 - c cos 20k)(f(Xk) - - f (x ,)) ,

see for example Powell (1976). Using (7.13) we obtain (7.5).
From (7.4),

1 2 ~M, llxk-x,[[<~fk - f , ,

which together with (7.5) implies [[xk--x, ll~rk/2[2(fo--f,)/M,]~/2 , so that the
sequence {Xk} is E-linearly convergent also. []

526 D.C. Liu, J. Nocedal / Limited memory BFGS

of convergence. The L-BFGS method does not have this property, and I~-linear

convergence is the best we can expect. Finally we note that the algorithms of Shanno
and Phua and Buckley and LeNir are special cases of Algorithm 7.1, if we let the
integer m vary at each iteration in the interval [1, mma,,], where mrnax is the maximum
number of corrections allowed (see Buckley and LeNir, 1983). Therefore Theorem
7.1 applies also to these two methods.

8. Final remarks

Our tests indicate that a simple implementat ion of the L-BFGS method performs

better than the code of Buckley and LeNir (1985), and that the L-BFGS method
can be greatly improved by means of a simple dynamic scaling, such as M3. Our
tests have convinced us that the partitioned quasi-Newton method of Griewank and
Toint is an excellent method for large scale optimization, it is highly recommended
if the user is able and willing to supply the information on the objective function
that the method requires, and it is particularly effective when the element functions
depend on a small number of variables (less than 4 or 5, say). The L-BFGS method
is appealing for several reasons: it is very simple to implement, it requires only
function and gradient va lues - -and no other information on the p rob lem- -and it
can be faster than the partitioned quasi-Newton method on problems where the
element functions depend on more than 3 or 4 variables. In addition, the L-BFGS

method appears to be preferable to PQN for large problems in which the Hessian
matrix is not very sparse, or for problems in which the information on the separability
of the objective function is difficult to obtain.

Our tests also indicate that L-BFGS with dynamic scalings performs better than
the C O N M I N code of Shanno and Phua (1980) and than the standard conjugate
gradient method (CG), except in one case: for large problems with inexpensive
functions, CG is competitive with L-BFGS.

Acknowledgements

We would like to thank Andreas Griewank and Claude Lemar6chal for several
helpful conversations, and Richard Byrd for suggesting the scaling used in method

M4. We are grateful to Jorge Mor6 who encouraged us to pursue this investigation,
and who made many valuable suggestions, and to the three referees for their helpful
c o m m e n t s .

References

E.M.L. Beale, "Algorithms for very large nonlinear optimization problems," in: M.J.D. Powell, ed.,
Nonlinear Optimization 1981 (Academic Press, London, 1981) pp. 281-292.

D.C. Liu, J. Nocedal / Limited memory BFGS 527

A. Buckley, "A combined conjugate gradient quasi-Newton minimization algorithm," Mathematical
Programming 15 (1978) 200-210.

A. Buckley, "Update to TOMS Algorithm 630," Rapports Techniques No. 91, Institut National de
Recherche en Informatique et en Automatique, Domaine Voluceau, Rocquencourt, B.P. 105 (Le
Chesnay, 1987).

A. Buckley and A. LeNir, "QN-like variable storage conjugate gradients," Mathematical Programming
27 (1983) 155-175.

A. Buckley and A. LeNir, "BBVSCG--A variable storage algorithm for function minimization," A C M
Transactions on Mathematical Software 11/2 (1985) 103-119.

R.H. Byrd and J. Nocedal, "'A tool for the analysis of quasi-Newton methods with application to
unconstrained minimization," S I A M Journal on Numerical Analysis 26 (1989) 727-739.

J.E. Dennis Jr. and R.B. Schnabel, Numerical methods for unconstrained optimization and nonlinear
equations (Prentice-Hall, 1983).

J.E. Dennis Jr. and R.B. Schnabel, "A view of unconstrained optimization," in: G.L. Nemhauser, A,H.G.
Rinnooy Kan and M.J. Todd, eds., Handbooks in Operations Research and Management Science, Vol.
1, Optimization (North-Holland, Amsterdam, 1989) pp. 1-72.

R. Fletcher, Practical Methods o f Optimization, Vol. 1, Unconstrained Optimization (Wiley, New York,
1980).

J.C. Gilbert and C. Lemar6chal, "Some numerical experiments with variable storage quasi-Newton
algorithms," IIASA Working Paper WP-88, A-2361 (Laxenburg, 1988).

P.E. Gill and W. Murray, "Conjugate-gradient methods for large-scale nonlinear optimization," Technical
Report SOL 79-15, Department of Operations Research, Stanford University (Stanford, CA, 1979).

P.E. Gill, W. Murray and M.H. Wright, Practical Optimization (Academic Press, London, 1981).
A. Griewank, "The global convergence of partitioned BEGS on semi-smooth problems with convex

decompositions," ANL/MCS-TM-105, Mathematics and Computer Science Division, Argonne
National Laboratory (Argonne, IL, 1987).

A. Griewank and Ph.L. Toint, "Partitioned variable metric updates for large structured optimization
problems," Numerische Mathematik 39 (1982a) 119-137.

A. Griewank and Ph.L. Toint, "Local convergence analysis of partitioned quasi-Newton updates,"
Numerische Mathematik 39 (1982b) 429-448.

A. Griewank and Ph.L. Toint, "Numerical experiments with partially separable optimization problems,"
in: D.F. Griffiths, ed., Numerical Analysis: Proceedings Dundee I983, Lecture Notes in Mathematics,
Vol. 1066 (Springer, Berlin, 1984) pp. 203-220.

D.C. Liu and J. Nocedal, "'Test results of two limited memory methods for large scale optimization,"
Technical Report NAM 04, Department of Electrical Engineering and Computer Science, Northwestern
University (Evanston, IL, 1988).

J.J. Mor6, B.S. Garbow and K.E. Hillstrom, "Testing unconstrained optimization software," A C M
Transactions on Mathematical Software 7 (1981) 17-41.

S.G. Nash, "Preconditioning of truncated-Newton methods," S I A M Journal on Scientific and Statistical
Computing 6 (1985) 599-616.

L. Nazareth, "A relationship between the BFGS and conjugate gradient algorithms and its implications
for new algorithms," S I A M Journal on Numerical Analysis 16 (1979) 794-800.

J. Nocedal, "Updating quasi-Newton matrices with limited storage," Mathematics of Computation 35
(1980) 773-782.

D.P. O'Leary, "A discrete Newton algorithm for minimizing a function of many variables," Mathematical
Programming 23 (1982) 20-33.

J.D. Pearson, "Variable metric methods of minimization," Computer Journal 12 (1969) 171-178.
J.M. Perry, "A class of conjugate gradient algorithms with a two-step variable-metric memory," Discussion

Paper 269, Center for Mathematical Studies in Economics and Management Science, Northwestern
University (Evanston, IL, 1977).

M.J.D. Powell, "Some global convergence properties of a variable metric algorithm for minimization
without exact line search," in: R.W. Cottle and C.E. Lemke, eds., Nonlinear Programing, S I A M - A M S
Proceedings IX (SIAM, Philadelphia, PA, 1976).

M.J.D. Powell, "Restart procedures for the conjugate gradient method," Mathematical Programming 12
(1977) 241-254.

D.F. Shanno, "On the convergence of a new conjugate gradient algorithm," S I A M Journal on Numerical
Analysis 15 (1978a) 1247-1257.

528 D.C. Liu, J. Nocedal / Limited memory BFGS

D.F. Shanno, "Conjugate gradient methods with inexact searches," Mathematics o f Operations Research
3 (1978b) 244-256.

D.F. Shanno and K.H. Phua, "Matrix conditioning and nonlinear optimization," Mathematical Program-
ming 14 (1978) 149-160.

D.F. Shanno and K.H. Phua, "Remark on algorithm 500: minimization of unconstrained multivariate
functions," A C M Transactions on Mathematical Software 6 (1980) 618-622.

T. Steihaug, "The conjugate gradient method and trust regions in large scale optimization," S l A M Journal
on Numerical Analysis 20 (1983) 626-637.

Ph.L. Toint, "Some numerical results using a sparse matrix updating formula in unconstrained optimi-
zation~" Mathematics' o f Computation 32 (1978) 839-851.

Ph.L. Toint, "'Towards an efficient sparsity exploiting Newton method for minimization," in: I.S. Duff,
ed., Sparse Matrices and their Uses (Academic Press, New York, 1981) pp. 57-87.

Ph.L. Toint, "Test problems for partially separable optimization and results for the routine PSPMIN,"
Report Nr 83/4, Department of Mathematics, Facult6s Universitaires de Namur (Namur, 1983a).

Ph.L. Toint, "VE08AD, a routine for partially separable optimization with bounded variables," Harwell
Subroutine Library, A.E.R.E. (UK, 1983b).

Ph.L. Toint, "A view of nonlinear optimization in a large number of variables," Report Nr 86/16,
Department of Mathematics, Facult6s Universitaires de Namur (Namur, 1986).

