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We study the numerical performance of a limited memory quasi-Newton method for large scale 
optimization, which we call the L-BFGS method. We compare its performance with that of the 
method developed by Buckley and LeNir (1985), which combines cycles of BFGS steps and 
conjugate direction steps. Our numerical tests indicate that the L-BFGS method is faster than the 
method of Buckley and LeNir, and is better able to use additional storage to accelerate convergence. 
We show that the L-BFGS method can be greatly accelerated by means of a simple scaling. We 
then compare the L-BFGS method with the partitioned quasi-Newton method of Griewank and 
Toint (1982a). The results show that, for some problems, the partitioned quasi-Newton method 
is clearly superior to the L-BFGS method. However we find that for other problems the L-BFGS 
method is very competitive due to its low iteration cost. We also study the convergence properties 
of the L-BFGS method, and prove global convergence On uniformly convex problems. 

Key words: Large scale nonlinear optimization,, limited memory methods, partitioned quasi- 
Newton method, conjugate gradient method. 

I. Introduction 

We consider the minimization of a smooth nonlinear function f :  N n ~  N, 

m i n f ( x ) ,  (1.1) 

in the case where the n u m b e r  of variables n is large, and  where analyt ic  expressions 

for the func t ion  f and the gradient  g are available.  A mong  the most  useful  methods  

for solving this problems are: (i) Newton ' s  method  and  variat ions of it (see, for 

example,  Steihaug, 1983; O'Leary,  1982; Toint ,  1981; Nash,  1985); (ii) the par t i t ioned  

quas i -Newton  method of Gr iewank  and Toin t  (1982a); (iii) the conjugate  gradient  

method  (see, for example,  Fletcher, 1980; Gill ,  Murray  and  Wright, 1981); (iv) 

l imited memory  quas i -Newton  methods.  

This paper  is devoted to the study of l imited memory  quas i -Newton  methods  for 

large scale opt imizat ion.  These methods can be seen as extensions of the conjugate  

gradient  method,  in which addi t ional  storage is used to accelerate convergence.  

They are sui table for large scale problems because  the a m o u n t  of storage required  
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by the algorithms (and thus the cost of the iteration) can be controlled by the user. 
Alternatively, limited memory methods can be viewed as implementations of quasi- 
Newton methods, in which storage is restricted. Their simplicity is one of their main 
appeals: they do not require knowledge of the sparsity structure of the Hessian, or 
knowledge of the separability of the objective function, and as we will see in this 
paper, they can be very simple to program. 

Limited memory methods originated with the work of Perry (1977) and Shanno 
(1978b), and were subsequently developed and analyzed by Buckley (1978), 
Nazareth (1979), Nocedal (1980), Shanno (1978a), Gill and Murray (1979), and 
Buckley and LeNir (1983). Numerical tests performed during the last ten years on 
medium size problems have shown that limited memory methods require substan- 
tially fewer function evaluations than the conjugate gradient method, even when 
little additional storage is added. However little is known regarding the relative 
performance of these methods with respect to Newton's method or the partitioned 
quasi-Newton algorithm, when solving large problems. Moreover, since the study 
by Gill and Murray (1979), there have been no attempts to compare the various 
limited memory methods with each other, and it is therefore not known which is 
their most effective implementation. 

In this paper we present and analyze the results of extensive numerical tests of 
two limited memory methods and of the partitioned quasi-Newton algorithm. We 
compare the combined CG-QN method of  Buckley and LeNir (1983) as implemented 
in Buckley and LeNir (1985), the limited memory BFGS method described by 
Nocedal (1980), and the partitioned quasi-Newton method, as implemented by 
Toint (1983b). The results indicate that the limited memory BFGS method (L-BFGS) 
is superior to the method of Buckley and LeNir. They also show that for many 
problems the partitioned quasi-Newton method is extremely effective, and is superior 
to the limited memory methods. However we find that for other problems the 
L-BFGS method is very competitive, in terms of CPU time, with the partitioned 
quasi-Newton method. 

We briefly review the methods to be tested in Section 2, where we also describe 
the problems used in our experiments. In Section 3 we present results that indicate 
that the limited memory BFGS method is faster than the method of Buckley and 
LeNir (1985), and is better able to use additional storage to accelerate convergence. 
In Section 4 we explore ways of improving the performance of the L-BFGS method, 
by choosing suitable diagonal scalings, and study its behavior on very large problems 
(where the number of variables is in the thousands). In Section 5 we compare the 
L-BFGS method with two well-known conjugate gradient methods, paying particular 
attention to execution times. In Section 6 we compare the L-BFGS method and the 
partitioned quasi-Newton method, and in Section 7 we give a convergence analysis 
of the L-BFGS method. 

While this work was in progress we became aware that Gilbert and Lemar6chal 
(1988) had performed experiments that are similar to some of the ones reported 
here. They used a newer implementation by Buckley (1987) of the Buckley-LeNir 
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method; this new code is more efficient than the ACM TOMS code of Buckley and 

LeNir (1985) used in our tests. Gilbert and Lemar6chal 's  implementation of the 
L-BFGS method is almost identical to ours. They conclude that the L-BFGS method 
performs better than Buckley's new code, but the differences are less pronounced 
than the ones reported in this paper. 

Our L-BFGS code will be made available through the Harwell library under the 
name VA15. 

2. Preliminaries 

We begin by briefly reviewing the methods tested in this paper. 

The method of Buckley and LeNir combines cycles of BFGS and conjugate 
gradient steps. It starts by performing the usual BFGS method, but stores the 
corrections to the initial matrix separately to avoid using O(n 2) storage. When the 

available storage is used up, the current BFGS matrix is used as a fixed precon- 
ditioner, and the method performs precondit ioned conjugate gradient steps. These 
steps are continued until the criterion of Powell (1977) indicates that a restart is 
desirable; all BFGS corrections are then discarded and the method performs a 
restart. This begins a new BFGS cycle. 

To understand some of the details of  this method one must note that Powell 's 
restart criterion is based on the fact that, when the objective function is quadratic 

and the line search is exact, the gradients are orthogonal. Therefore to use Powell 
• . \ 

restarts, it is necessary that the line search be exact for quadratic objecuve functions, 
which means that the line search algorithm must perform at least one interpolation. 

This is expensive in terms of function evaluations, and some alternatives are 
discussed by Buckley and LeNir (1983). 

The method of Buckley and LeNir generalizes an earlier algorithm of Shanno 
(1978b), by allowing additional storage to be used, and is regarded as an effective 
method (see Dennis and Schnabel, 1987; Toint, 1986). 

The limited memory BFGS method (L-BFGS) is described by Nocedal  (1980), 
where it is called the SQN method. It is almost identical in its implementat ion to 
the well known BFGS method. The only difference is in the matrix update: the 
BFGS corrections are stored separately, and when the available storage is used up, 
the oldest correction is deleted to make space for the new one. All subsequent 
iterations are of  this form: one correction is deleted and a new one inserted. Another 

description of the method,  which will be useful in this paper,  is as follows. The 
user specifies the number  m of BFGS corrections that are to be kept, and provides 
a sparse symmetric and positive definite matrix Ho, which approximates the inverse 
Hessian of  f During the first m iterations the method is identical to the BFGS 
method. For k >  m, Hk is obtained by applying m BFGS updates to /4o using 
information from the m previous iterations. 
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To give a precise description of the L-BFGS method we first need to introduce 

some notation• The iterates will be denoted by Xk, and we define Sk =Xk+I--Xk and 
Yk = gk+l--gk. The method uses the inverse BFGS formula in the form 

T + Y 
Hk+l = VkHkVk pkSkSk, (2.1) 

where Pk = 1/YVk&, and 

Vk = I -- pkYk sT. 

(See Dennis and Schnabel, 1983•) 

Algorithm 2.1 (L-BFGS method).  

Step 1. Choose Xo, m, 0 < f l ' < ½ ,  f l ' < /3  < 1, and a symmetric and positive definite 
starting matrix /40. Set k = 0. 

Step 2. Compute  

dk = -- Hkgk, (2.2) 

Xk+l = Xk + akdk, (2.3) 

where Cek satisfies the Wolfe conditions: 

f ( x k  + akdk) ~< , v ~ f ( x k )  + [3 akgkdk, (2.4) 

g(xk + akdk)T dk >1 flg~'dk. (2.5) 

(We always try the steplength ak = 1 first.) 
Step3. Let rh = min{k, m - 1}. Update Ho rfi + 1 times using the pairs {y~, s~}~=k_,~, 

i.e. let 

Hk+l=(V~ ' ' "  v T - , ; , ) g o (  v k - , ~  " " " V k )  

+ P k - & (  Y T  " T T • • V k _ r h + l ) S k r r h S k _ r f l ( V k _ , ~ + l ' ' "  Vk)  

_~ Pk_rfi+l( V ~  T T • • • V ~ - , ~ , + 2 ) S k - , ~ + , S k _ ~ + , ( V k _ ~ + 2 "  • • v ~ )  

"4- pkSkSTk. 

Step 4. Set k:= k +  1 and go to Step 2. 

(2.6) 

We note that the matrices Hk are not formed explicitly, but the lh + 1 previous 
values of yj and sj are stored separately. There is an efficient formula, due to Strang, 
for computing the product  Hkgk (see Nocedal,  1980). Note that this algorithm is 
very simple to program; it is similar in length and complexity to a BFGS code that 
uses the inverse formula. 

This implementation of the L-BFGS method coincides with the one given in 
Nocedal (1980), except for one detail: the line search is not forced to perform at 
least one cubic interpolation, but the unit steplength is always tried first, and if it 
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satisfies the Wolfe conditions, it is accepted. Our aim is that the limited memory  
method resemble BFGS as much as possible, and we disregard quadratic termination 
properties, which are not very meaningful, in general, for large dimensional 
problems. 

The partitioned quasi-Newton method of Griewank and Toint assumes that the 
objective function has the form 

n e  

f ( x )  = ~ f ( x ) ,  (2.7) 
i ~ l  

where each of  the ne element functions f depends only on a few variables (more 

generally, it assumes that the Hessian matrix of  each element function has a low 
rank compared with n). The method updates an approximation B~ to the Hessian 
of each element function using the BFGS or SR1 formulas. These small dense 
matrices, which often contain excellent curvature information, can be assembled to 
define an approximation to the Hessian o f f  The step is determined by an inexact 
linear conjugate gradient iteration, and a trust region is kept to safeguard the length 
of the step. 

The partitioned quasi-Newton method (PQN) requires that the user supply 
detailed information about the objective function, and is particularly effective if the 

correct range of the Hessian of each element function is known. Since in many 
practical applications the objective function is of  the form (2.7), and since it is often 
possible to supply the correct range information, the method is of great practical 
value. For a complete description of this algorithm, and for an analysis of  its 

convergence properties see Griewank and Toint (1982a, 1982b, 1984) and Griewank 
(1987). The tests of the PQN method reported in this paper  were performed with 
the Harwell routine rE08 written by Toint (1983b). 

2.1. The test problems 

The evaluation of optimization algorithms on large scale test problems is more 
difficult than in the small dimensional case. When the number  of variables is very 
large (in the hundreds or thousands),  the computat ional  effort of the iteration 
sometimes dominates the cost of evaluating the function and gradient. However  

there are also many practical large scale problems for which the function evaluation 
is exceedingly expensive. In most of  our test problems the function evaluation is 
inexpensive. We therefore report both the number  of  function and gradient evalu- 
ations and the time required by the various parts of  the algorithms. Using this 
information we will try to identify the classes of problems for which a particular 
method is effective. 

We have used the 16 test problems as showed in Table 1 with dimensions ranging 
from 49 to 10000. 

Problems 12, 13 and 15, and the starting points used for them, are described in 
Liu and Nocedal  (1988). They derive from the problem of determining the square 
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Table 1 

Set of test problems 

Problem Problem's name Reference 

1 Penalty I Gill and Murray (1979) 
2 Trigonometric Mor6 et al. (1981) 
3 Extended Rosenbrock Mor~ et al. (1981) 
4 Extended Powell Mor6 et al. (1981) 
5 Tridiagonal Buckley and LeNir (1983) 
6 QOR Toint (1978) 
7 GOR Toint (1978) 
8 PSP Toint (1978) 
9 Tridiagonal Toint (1983a) 

10 Linear Minimum Surface Toint (1983a) 
11 Extended ENGVL1 Toint (1983a) 
12 Matrix Square Root 1 
13 Matrix Square Root 2 
14 Extended Freudenstein and Roth Toint (1983a) 
15 Sparse Matrix Square Root 
16 ults0 Gilbert and Lemar~chal (1988) 

roo t  of  a given matr ix  A, i.e. f inding a mat r ix  B such that  B 2 = A. Fo r  all the o ther  

p r o b l e m s  we used the s t a n d a r d  s tar t ing po in ts  given in the references.  All  the runs 

r epor t ed  in this p a p e r  were  t e rmina ted  when  

[Igkll < 10 5 x m a x ( 1 ,  IIx~ll), (2.8) 

where  I1" ]] denotes  the Euc l i dean  norm.  We require  low accuracy  in the so lu t ion  

because  this is c o m m o n  in prac t ica l  app l i ca t ions .  

Since we have p e r f o r m e d  a very large n u m b e r  o f  tests, we descr ibe  the results 

ful ly in an a c c o m p a n y i n g  repor t  (Liu and  Noceda l ,  1988). In this p a p e r  we present  

only  representa t ive  samples  and  summar i e s  o f  these results,  and  the in teres ted r eade r  

is referred to that  r epor t  for  a de ta i led  desc r ip t ion  o f  all the  tests pe r fo rmed .  We 

shou ld  note  that  all the  comment s  and conclus ions  made  in this p a p e r  are based  

on da ta  p resen ted  here  and  in the a c c o m p a n y i n g  report .  

3. Comparison with the method of Buckley and LeNir 

In this sec t ion we c o m p a r e  the me thod  of  Buckley  and  L e N i r  (B-L)  with the L - B F G S  

method .  In  bo th  me thods  the user  specifies the  amoun t  o f  s torage to be used,  by  

giving a n u m b e r  m, which  de te rmines  the  n u m b e r  o f  mat r ix  upda tes  that  can be 

s tored.  When  m = 1, the m e t h o d  o f  Buckley  and  L e N i r  reduces  to Shanno ' s  method ,  

and  when m = oo both  m e t h o d s  are ident ica l  to the B F G S  method .  F o r  a given value 

o f  m, the two methods  requi re  roughly  the same amoun t  o f  s torage,  but  the L - B F G S  

me thod  requires  s l ightly less a r i thmet ic  work  pe r  i te ra t ion  than  the B - L  me thod  (as 

i m p l e m e n t e d  by  Buckley  and  LeNir ,  1985). 



D.C. Liu, J. Nocedal / Limited memory BFGS 509 

In both codes the line search is terminated when (2.4) and 

[g( xk + akdk ) T dkl <~ -- [3g~ dk (3.1) 

are satisfied ((3.1) is stronger than (2,5), which is useful in practice). We use the 
values/3 '  = 10 -4 and/3 = 0.9, which are recommended  by Buckley and LeNir (1985), 
and are also used by Nocedal (1980). All other parameters in the code of Buckley 

and LeNir were set to their default values, and therefore the method was tested 
precisely as they recommend. For the L-BFGS method we use a line search routine 
based on cubic interpolation, developed by J. Mor6. 

In Table 2 we give the amount  of storage required by the two limited memory 
methods for various values of m and n, and compare it to the storage required by 
the BFGS method. For example, for a problem with 50 variables, if m = 5, 660 
locations are required by each limited memory  method. 

Table 2 

Storage locations 

n m: 5 7 15 BFGS 

50 660 864 1680 1425 
100 1310 1714 3330 5350 

1000 13010 17014 33030 503500 

The tests described below were made on a s u n  3/60 in double-precision arithmetic, 
for which the unit roundoff is approximately 10 -16. For each run we verified that 

both methods converged to the same solution point. We tested three methods: (1) 
The combined CG-QN method of Buckley and LeNir (1985) using analytical 
gradients; (2) the L-BFGS method; (3) the BFGS method, using the line search 
routine of J. Mor6. 

The initial Hessian approximation was always the identity matrix, and after one 

iteration was completed, all methods update  yo/ instead of I, where 

T 
• o =- y0 So/II yotl 2. (3.2) 

This is a simple and effective way of introducing a scale in the algorithm (see Shanno 
and Phua, 1978). 

In the following tables, P denotes the problem number,  N the number  of  variables 
and m the number  of updates allowed. The results are reported in the form 

number of i terations/number of function evaluations 

iteration time/function time/total time 

where "iteration t ime" includes the time needed to generate the search direction, 
perform the line search and test convergence, but excludes the time to evaluate the 
function and gradient. For all methods the number  of gradient evaluations equals 
the number  of function evaluations. 
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In Table 3 we compare the performance of  the two limited memory methods 
when m = 5, 7, 9. Results for m = 15 are given in Table 4, where the runs for the 
BFGS method are also included for comparison. 

Table 3 

Comparison of the two limited memory methods for m = 5, 7, 9 

P N Buckley-LeNir L-BFGS 

m=5 m=7 m=9 m=5 m=7 m=9 

1 1000 19/88 19/87 19/75 45/55 44/54 44/54 
74/49/123 79/48/127 95/41/136 147/27/174 179/27/206 215/27/242 

2 1000 48/102 44/94 45/96 53/58 55/58 57/59 
174/675/849 162/603/765 187/652/839 165/337/502 237/394/631 288/381/669 

4 100 52/108 45/98 38/79 106/lll 94/98 57/61 
17/7/24 17/6/23 16/4/20 35/3/38 42/5/47 27/2/29 

5 100 73/147 72/145 72/145 1 3 4 / 1 6 8  1 2 6 / 1 4 7  111/131 
52/13/65 70/11/81 82/12/94 43/14/57 55/10/65 51/17/68 

7 50 82/165 81/163 79/160 1 6 2 / 1 6 4  1 4 8 / 1 5 0  150/152 
15/48/63 21/47/68 17/44/61 25/50/75 35/40/75 39/41/80 

10 961 171/343 1 8 3 / 3 6 7  1 7 2 / 3 4 6  1 6 8 / 2 8 0  1 6 7 / 2 7 4  163/267 
526/782/ 549/858/ 544/806/ 516/630/ 669/606/ 680/610/ 
1308 1407 1350 1146 1275 1290 

11 1000 14/42 15/44 13/40 36/42 35/41 34/40 
55/38/93 72/38/110 71/35/106 116/37/153 139/35/174 162/35/197 

12 100 231/467 2 3 5 / 4 7 8  2 2 5 / 4 5 2  2 5 4 / 2 6 0  2 4 5 / 2 5 1  246/252 
161/531/692 175/535/710 180/507/687 93/145/238 112/146/258 133/149/282 

In each box, the two numbers in the top represent iterations/function-evaluations, and the three 
numbers below give iteration-time/function-time/total-time. 

Tables 3 and 4 give only a small sample of  our results, but it is representative of 
what we have observed (see Liu and Nocedal, 1988). We see that the BFGS method 
usually requires the fewest function calls, and that for some problems, L-BFGS 
approaches the performance of  the BFGS method. For other problems, however, 

there remains a gap in terms of  function calls, between the BFGS and L-BFGS. In 
Table 5 we summarize the performance of  the two limited memory methods on our 
whole set of  problems, as measured by the number of  function evaluations. We give 
the number of wins, i.e. the number of runs for which a method required fewer 
function calls than the other one. 

We see from these results that the L-BFGS method usually requires fewer function 
calls than the method of  Buckley and LeNir (B-L). This is also true if we consider 
only problems with a very large number of  variables (n ~- 1000). Only for m = 3 are 

the two methods comparable, and we see that as m increases, the differences between 
the two become large. To investigate the reason for this, we measure in Figures 1 
and 2 the effect of increasing the storage. We define "speed-up" to be the ratio 
N F U N ( m  = 3 ) / N F U N ( m  = 7), where N F U N ( m  = s) denotes the number of func- 
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Table 4 

Limited memory methods using m = 15, and the BFGS method 

511 

P N Buckley-LeNir L-BFGS BFGS 

m=15 m=15 

1 1000 19/84 44/54 44/54 
164/54/218 308/30/338 

2 1000 52/110 54/56 54/56 
278/727/1005 392/359/751 

4 100 42/87 46/50 41/45 
24/6/30 33/3/36 

5 100 71/143 110/124 72/77 
108/16/124 86/9/95 

7 50 147/148 127/129 121/123 
130/42/172 51/37/88 

10 961 170/341 155/255 147/238 
612/810/1422 934/578/1512 

11 1000 13/40 29/35 29/35 
99/35/134 186/32/218 

12 100 229/464 263/269 179/185 
189/533/722 222/161/383 

Table 5 

Number of wins on the whole set of problems 

Method m =3 m = 5 m =7 m =9 m = 15 Total 

B-L 13 10 5 4 8 39 
L-BFGS 17 20 24 26 22 110 

Number 
of 20 

Problems 

1 1 

n 
.9 1 1.1 1.5 1.8 

Fig. 1. Speed-up, NFUN(3)/NFUN(7), for B-L method. 

Speed-up 
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Number 
of 

Problems 

10 

5 

i 111  111  
Hflm HDH 

.9 1.1 1.2 1.3 1.4 1.5 1.6 3.2 3.5 4.6 Speed-up 

Fig. 2. Speed-up, NFUN(3)/NFUN(7),  for L-BFGS method. 

tion evaluations needed when m = s. Thus if the speed-up is near I the method does 

not gain much from additional storage, whereas a large number means a substantial 

improvement. In the tables we give the number of test problems for which a certain 

speed-up was obtained. 
The method of Buckley and LeNir gives little or no speed-up in most of the 

problems. This is very disappointing because m = 7 represents a substantial increase 

in storage. (The picture is only a slightly better if we define speed-up as 

NFUN(3) /NFUN(15) . )  In contrast, the L-BFGS method gives a substantial speed- 

up in 70% of the problems. We have observed that the L-BFGS method usually 

reduces the number of function calls as storage is increased, and that this property 

is true both for medium size and large problems (Liu and Nocedal, 1988). These 

observations agree with the experience of  Gilbert and Lemar6chal (1988). 
In our view the method of Buckley and LeNir is not able to use increased storage 

effectively for the following reason. During the CG cycle, the method uses all m 

corrections to define the preconditioner. However the restarts are usually performed 

after only a few iterations of this cycle, and the m corrections are discarded to begin 

the BFGS cycle. The average number of corrections used during the BFGS cycle is 

only ½(m+l),  since corrections are added one by one. Indeed, what may be 
particularly detrimental to the algorithm is that the first two or three iterations of 
the BFGS cycle use a small amount of information. We should add that the relatively 

accurate line searches performed by the implementation of Buckley and Lenir (1985) 

also contribute to the inefficiency of the method (this, however, has been corrected 

in a recent update of  the method; see Buckley, 1987). 

In practice we would rarely wish to use m greater than 15. However it is interesting 

to observe the behavior of  the L-BFGS method when storage is increased beyond 

this point. In Table 6 we give the results of  using the L-BFGS method with 

m --- 15, 25, 40. 

Again we see that the number of function calls usually decreases with m, but the 

gain is not dramatic. The problems given in Table 6 are of medium size, but similar 

results where obtained when the number of  variables was large (n ~ 1000). 

So far we have concentrated only on the number of function calls, but as we have 

mentioned earlier, there are practical large scale problems for which the function 
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Table 6 

The L-BFGS method with a large amount of storage 

513 

P N L-BFGS 

m = 15 m = 25 m =40 

4 100 46/50 41/45 41/45 
33/3/36 36/2/38 43/2/45 

5 100 110/124 109/115 96/104 
86/9/95 137/7/144 167/5/172 

7 50 127/129 133/135 122/124 
51/37/88 82/37/119 107/34/141 

10 121 43/49 42/48 41/47 
33/16/49 36/16/52 41/14/55 

11 100 31/37 30/36 30/36 
21/2/23 22/4/26 24/4/28 

12 100 263/269 235/24l 220/226 
222/161/383 301/135/436 420/126/546 

and gradient evaluation is inexpensive. We will therefore now consider the number 
of iterations and the total amount of time required by the two limited memory 

methods. From Tables 3 and 4 we see that the method of Buckley and LeNir usually 

requires fewer iterations; when using CPU time as a measure, there is no clear 

winner. We therefore cannot conclude that the L-BFGS method, as implemented 

so far, is superior to the method of Buckley and LeNir for problems in which the 

function evaluation is cheap. However there is a simple way to improve the L-BFGS 
method in this case. 

First, we note that the reason Buckley and LeNir's method requires fewer iterations 

is that it performs a more accurate line search. The implementation recommended 

by Buckley and LeNir (1985), i.e. the one obtained by setting all parameters to their 

default values, ensures that at least one cubic interpolation is applied at every 

iteration of  the algorithm, which usually results in a very good estimate of the one 

dimensional minimizer. It is therefore natural to perform a more accurate line search 

in the L-BFGS method in order to decrease the number of iterations. In Table 7 
we give the results for the L-BFGS method, when the line search is forced to perform 
at least one cubic interpolation. 

For most problems the number of iterations is markedly reduced (compare Tables 

3 and 7). We now compare this implementation of the L-BFGS method with the 

method of Buckley and LeNir, and for simplicity we will use total CPU time as a 

measure. In Table 8 we give the number of  wins, i.e. the number of runs for which 

a method required less time than the other one, on our whole set of problems. 
This Table shows that the L-BFGS method is faster on most of the problems. 

Furthermore an examination of the results given in Liu and Nocedal (1988) shows 

that the differences are very substantial in many cases. We conclude from these 

experiments that the L-BFGS method should have two options: (i) when the function 
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Table 7 

L-BFGS method with a more accurate line search 

L-BFGS 

P N m = 5  m = 9  P N m = 5  m = 9  

1 1000 16/46 16/46 7 50 97/195 
45/27/72 66/27/93 15/57/72 

2 1000 44/89 44/89 12 100 229/461 
137/589/726 218/580/798 81/261/342 

11 1000 19/41 18/39 10 961 172/347 
60/37/97 77/36/123 512/77/1289 

91/183 
25/53/78 

222/447 
132/248/380 
157/317 
770/729/1499 

Table 8 

Number  of  wins - -count ing  total time 

Method m = 5 m = 9 Total 

B-L 5 6 11 
L-BFGS 24 24 48 

and gradient evaluation is expensive, the method should perform an inaccurate line 
search, like the one described earlier in this section; (ii) otherwise it should perform 
a more accurate line search, by forcing at least one interpolation, or by using a 
small value for the parameter/3 in (3.1). 

For the rest of the paper we will consider only the L-BFGS method, since we 
have seen that it outperforms the method of Buckley and LeNir. 

4. Scaling the L-BFGS method 

It is known that simple scalings of the variables can improve the performance of  
quasi-Newton methods on small problems. It is, for example, common practice to 
scale the initial inverse Hessian approximation in the BFGS method by means of 
formula (3.2). For large problems scaling becomes much more important (see Beale, 
1981; Griewank and Toint, 1982a; Gill and Murray, 1979). Indeed, Griewank and 
Toint report that a simple scaling can dramatically reduce the number of iterations 
of their partitioned quasi-Newton method in some problems. We have observed 
that this is also the case when using limited memory methods, as we shall discuss 
in this section. 

In the basic implementation of the L-BFGS method given in Algorithm 2.1, the 
initial matrix /40, or its scaled version 7oH0, is carried throughout the iterations. 
So far we have assumed only that/4o is sparse, and in our test we have set it to the 
identity matrix. The choice o f / 4 o  clearly influences the behavior of the method, 
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and a natural question is how best to choose it. If  the objective function is mildly 
nonlinear and if the diagonal entries of the Hessian are all positive, an excellent 

choice would be to let /40 be the diagonal of the inverse Hessian matrix at xo. In 
general, however, it is preferable to change this matrix as we proceed, so that it 

incorporates more up-to-date information. Let us therefore replace the matrix /4o 

in (2.6) by H~k °), and consider strategies for computing this matrix at every step. 

One simple idea is to use the scaling (3.2) at each iteration and set 

H20) = ykHo, (4.1) 

where Vk =y~Sk/[lYkll 2" Another possibility is to try to find a diagonal matrix that 

approximately satisfies the secant equation with respect to the last m steps. Let xk 

be the current iterate, and assume that k > m. We find the diagonal matrix Dk which 

minimizes 

I]Dk Yk_,-- Sk_,HF, (4.2) 

where [I'IIF denotes the Frobenius norm, and Yk ~=[Yk 1,- .- ,Yg-m],Sk-~ = 
[Sk-1, - • . ,  Sk-,~]. The solution is Dk ~ diag(d~) where 

i i i i dik_Sg I Y k - 1  ~- " ' "  -~- S k - m Y k  m 
i + ,  i ~2 , i = l , . . . , n .  (4.3) 

( Y k  1) 2-~- " ' "  ~Yk m) 

Since an element dR can be negative or very close to zero, we use the following 

safeguard: formula (4.3) is used only if the denominator in (4.3) is greater than 
10 -1°, and if all the diagonal elements satisfy d~ c [10-2Tk, 102Tk]; otherwise we set 

d~ = Yk. 
We have tested the L-BFGS method using the following scalings. 

Scaling MI:  H(~ °)= Ho (no scaling). 

Scaling M2: H(k °)= yoHo (only initial scaling). 

Scaling M3: H(k °)= ykHo. 
Scaling M4: Same as M3 during the first m iterations. For k > m, H(k °) = Dk ; see 

(4.3). 
In Table 9 we give the performance of these scalings on a few selected problems. 

Ho was set to the identity matrix, and the method used m = 5. The results were also 
obtained in a SUN 3/60. 

Note the dramatic reduction of function evaluations given by M3 and M4, with 

respect to M1. We have ranked the performance of the four scalings on each of our 

test problems, and tallied the rankings for all the problems. The result of such a 

tally is presented in Tables 10 and 11. 
We can see from these tables that M3 and M4 are the most effective scalings. We 

performed the same tests using m = 9 corrections and the results are very similar. 

M4 seldom required safeguarding; this was needed in only about 5% of the iterations. 

Our numerical experience appears to indicate that these two scalings are comparable 

in efficiency, and therefore M3 should be preferred since it is less expensive to 

implement. 
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Table 9 

The L-BFGS method with different scalings, when m ~ 5 

P N M1 M2 M3 M4 

1 1000 34/72 45/55 26/35 
111/35/146 147/27/174 87/18/105 

2 1000 51/54 53/58 48/50 
165/330/495 1 6 5 / 3 3 7 / 5 0 2  160/329/489 

7 50 89/179 162/164 111/119 
14/52/66 25/50/75 18/34/52 

10 961 214/569 168/280 190/197 
674/1318/1992 516/630/1146 592/435/1027 

11 1000 35/83 36/42 15/22 
112/71/183 116/37/153 45/18/63 

12 100 233/482 254/260 308/322 
78/286/364 93/145/238 110/183/293 

16 403 41/41 26/26 24/27 
61/1205/1266 36/806/842 35/825/860 

29/39 
114/20/134 
50/55 

175/332/507 
119/121 
25/35/60 

174/179 
544/405/949 

16/22 
54/20/74 

263/270 
109/151/260 
26/26 
38/808/846 

Table 10 

Relative performance of scaling methods, counting func- 
tion calls, on all problems, when m = 5 

M1 M2 M3 M4 

Best 0 3 12 10 
2nd 6 2 6 7 
3rd 4 12 4 t 
Worst 12 5 0 4 

Table 1 l 

Realative performance of scaling methods, counting 
CPU time, on all problems, when m - 5 

M1 M2 M3 M4 

Best 4 6 8 6 
2nd 8 0 7 8 
3rd 3 8 6 2 
Worst 7 8 1 6 

T h e r e  a re  m a n y  o t h e r  s t ra teg ies  for  d y n a m i c a l l y  c o m p u t i n g  sca l ings .  Gi l l  a n d  

M u r r a y  (1979) h a v e  s u g g e s t e d  a sca l ing  b a s e d  on  r e c u r r i n g  the d i a g o n a l  o f  the  

H e s s i a n  a p p r o x i m a t i o n  p r o d u c e d  by the  d i r ec t  B F G S  f o r m u l a .  I n  o u r  tests this 

f o r m u l a  p e r f o r m e d  wel l  s o m e t i m e s ,  bu t  was  very  inef f ic ien t  in m a n y  p r o b l e m s .  Its 

b e h a v i o r  s e e m e d  errat ic ,  e v e n  i f  o n e  i n c l u d e d  the  s a f e g u a r d s  sugges t ed  by Gi l l  a n d  

M u r r a y ,  a n d  t h e r e f o r e  we  do  n o t  r epo r t  t he se  resul ts .  It m a y  be  ve ry  f ru i t fu l  to 
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study other dynamic  scaling s t ra teg ies - -perhaps  this is one of the most  impor t an t  

topics of future  research in large scale opt imizat ion.  

4.1. Solving very large problems 

The largest problems considered so far have 1000 variables. To be able to perform 

a complete  set of  tests with larger problems,  we had to use a more powerful  mach ine  

than  the SUN 3/6O. In  Table  12 we describe the per formance  of the L-BFGS method  

on problems with 5000 and  10000 variables,  us ing the All iant  Fx/s at Argonne  

Nat iona l  Laboratory.  Double  precisio n ar i thmetic  in this machine  has a uni t  round-  

off of approximate ly  10 -16 . The results are reported in the form: 

number of iterations/number of function evaluations 

total time 

We see that  increasing the storage beyond  m = 5 has little effect on the n u m b e r  

of func t ion  evaluat ions,  in most  of the problems.  An improvement  is more not iceable  

if one uses scalings M1 or M2, but  the change is still small. We have observed,  in 

general,  that  when solving very large problems,  increasing the storage from m = 5 

Table 12 

L-BFGS method with scaling strategy M3 

P N m=3 m=5 m=9 m=15 m=40 

1 5000 31/46 30/45 30/45 30/45 30/45 
48 48 80 105 109 

1 10000 37/52 35/50 35/50 35/50 35/50 
117 142 199 263 289 

2 5000 50/53 44/49 46/48 45/48 42/45 
96 105 148 192 218 

2 10000 44/46 41/43 42/44 41/43 40/42 
168 195 273 347 394 

3 5000 34/52 33/48 35/50 35/50 35/50 
52 64 96 127 141 

3 10000 34/52 33/48 35/50 35/50 35/50 
105 130 195 258 284 

4 5000 78/99 52/61 48/58 49/55 44/49 
119 102 135 191 222 

4 10000 183/224 52/61 50/61 53/60 51/56 
565 207 289 427 612 

11 5000 15/22 15/22 15/22 15/22 15/22 
24 28 34 34 34 

11 10000 15/22 14/21 14/21 14/21 14/21 
47 53 63 61 61 

15 4999 150/157 1 4 7 / 1 5 6  1 4 6 / 1 5 2  1 4 3 / 1 5 2  142/150 
387 457 597 795 1500 

15 10000 149/160 1 4 9 / 1 5 7  1 4 4 / 1 5 3  1 4 0 / 1 4 7  145/154 
784 932 1200 1570 3130 
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or rn = 7 gives only a marginal improvement  of performance.  Gilbert and Lemar6chal 
(1988) report similar results. The reason for this is not clear to us. Note, from Table 
12, that in all problems the number  of iterations needed for convergence is much 

smaller than the dimension n. In fact, for several problems the number  of iterations 
is a small multiple of  m, which would lead one to believe that the value of m is 
significant. We feel that an explanation of  this requires further research. 

5. Comparison with conjugate gradient methods 

At this point it is reasonable to ask whether the L-BFGS method, using a scaling 
such as M3, is faster in terms of CPU time than some of the well-known conjugate 
gradient methods. We tested three methods: (1) the algorithm C O N M I N  developed 

by Shanno and Phua (1980); (2) the conjugate gradient method (CG) using the 
Polak-Ribi6re formula (see, for example, Powell, 1977), restarting every n steps, 
and wi th /3 ' - -  10 -4 and/3  =0.1 in (2.4) and (3.1); (3) the L-BFGS method M3, for 
which we tried both accurate and inaccurate line searches. By an accurate line 

search we mean one in which at least one interpolation was forced; an inaccurate 
line search does not enforce it. The results are presented in the form 

number of iterations/number of function evaluations 

iteration time/function time/total time 

Tables 14 and 15 summarize the results of  Table 13. The performance in terms 

of function calls is as expected: L-BFGS with inaccurate line search is best, CON- 

M I N  is second and CG is worst. 
Some of  the timing results of  Table 13 are very surprising. The CG method is in 

general faster than C O N M I N .  The best timings of L-BFGS are obtained when 

m = 3; in this case its performance is only slightly better than that of the CG method. 
Examining the results of  Table 13 closely we observe that in most of  our problems 

the function and gradient evaluation is inexpensive, which explains why the times 
of CG are good in spite of  its large number  of  function evaluations. However for 
a few problems, notably problem 16, the function and gradient are very expensive 
to compute. We see that in this case the L-BFGS method with an inaccurate line 

search is much better than CG. 
We conclude that the L-BFGS method performs well in comparison with the two 

conjugate gradient methods, both for expensive and inexpensive objective functions. 
We also conclude that for large problems with inexpensive functions the simple CG 
method can still be considered among the best methods available to date. Based on 
our experience we recommend to the user of  Harwell code VATS, which implements 
the M3 L-BFGS method, to use low storage and accurate line searches, when 

function evaluation is inexpensive, and to set 3 ~ m ~< 7 and use an inaccurate line 

search when the function is expensive. 
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Table 13 

CONMIN, CG and L-BFGS methods 

519 

P N CONMIN CG L-BFGS (M3) 

Normal line s e a r c h  Accurate  line search 

m=3 m=5 m=3 m=5 

1 100 7/15 
2/1/3 

1 1000 11/23 
39/14/53 

2 100 46/98 
16/67/83 

2 1000 47/100 
167/653/820 

3 100 21/54 
7/3/10 

3 1000 30/74 
107/26/133 

4 100 47/95 
16/4/20 

4 1000 41/83 
147/48/195 

5 100 74/149 
27/11/38 

5 1000 280/561 
1010/418 
1428 

6 50 23/47 
5/2/7 

7 5O 105/213 
20/57/77 

8 50 84/173 
16/7/23 

9 100 72/145 
26/11/37 

9 1000 275/551 
1000/405 
1405 

10 121 49/99 
21/25/46 

10 961 163/329 
610/731 
1341 

11 100 14/29 
5/3/8 

11 1000 13/27 
47/25/72 

12 i00 231/466 
90/278/368/ 

13 I00 200/403 
74/235/309 

16 403 25/52 
36/1520 
1556 

9/39 16/21 16/21 7/18 7/18 
1/2/3 3/1/4 3/1/4 2/1/3 2/I/3 
11/58 28/37 26/35 12/32 12/32 
15/44/59 64/23/87 87/18/105 27/17/44 40/18/58 
47/108 52/56 50/57 43/88 44/89 
8/73/81 12/35/47 15/37/52 10/59/69 13/59/72 
46/102 49/54 48/50 49/99 46/94 
73/664/737 110/334/444 160/329/489 108/654/762 153/614/767 
23/78 34/52 33/48 29/70 31/73 
4/5/9 7/2/9 9/2/11 6/4/10 8/4/12 
23/78 34/52 33/48 29/70 31/73 
38/29/67 78/19/97 105/17/122 66/25/91 98/26/124 
125/287 70/89 46/54 33/70 25/54 
18/19/37 17/3/20 15/2/17 8/3/11 7/2/9 
205/465 76/100 50/58 34/72 37/79 
330/230/560 174/55/229 176/30/206 76/34/110 130/44/174 
75/151 1 2 9 / 1 4 1  1 0 9 / 1 1 4  73/147 74/149 
11/11/22 30/8/38 37/9/46 17/10/27 25/10/35 
280/561 4 5 9 / 4 8 3  4 2 2 / 4 4 3  2 8 1 / 5 6 3  281/563 
440/418 1056/348 1530/320 6 4 6 / 4 2 0  1018/420 
858 1404 1850 1066 1438 
23/47 37/42 34/38 23/47 23/47 
2/2/4 4/2/6 5/1/6 2/2/4 3/2/5 
92/186 1 1 6 / 1 2 4  1 1 1 / 1 1 9  87/175 90/181 
8/54/62 14/35/49 18/34/52 10/52/62 14/53/67 
83/211 1 1 0 / 1 3 5  1 0 1 / 1 2 0  91/190 83/169 
7/9/16 14/6/20 17/5/22 11/9/20 15/7/22 
73/147 1 1 2 / 1 1 9  1 0 5 / 1 1 2  73/147 72/145 
12/11/23 26/7/33 36/7/43 17/12/29 23/11/34 
275/551 4 2 3 / 4 5 1  3 6 7 / 3 8 7  2 7 6 / 5 5 3  276/553 
437/405 9 7 2 / 3 2 8  1324/284 6 3 2 / 4 0 9  938/407 
842 1300 1608 1041 1345 
45/91 49/52 47/51 42/87 42/87 
8/22/30 13/12/25 17/12/29 11/20/31 13/22/35 
186/379 2 0 1 / 2 0 6  1 9 0 / 1 9 7  1 6 5 / 3 3 8  165/339 
280/886 4 4 4 / 4 6 8  5 9 2 / 4 3 5  3 6 4 / 7 4 0  510/746 
1166 912 1027 1104 1256 
18/47 18/25 15/21 17/37 15/33 
3/4/7 4/1/5 4/1/5 4/4/8 4/4/8 
18/49 15/22 15/22 15/33 14/31 
29/43/72 34/20/54 45/18/63 34/27/61 43/27/70 
239/482 2 7 2 / 2 8 8  3 0 8 / 3 2 2  2 3 6 / 4 7 5  234/471 
38/290/328 63/165/228 110/183/293 54/281/335 79/280/359 
225/454 2 9 0 / 3 0 8  2 8 1 / 2 8 9  2 1 7 / 4 3 5  224/449 
35/254/289 66/182/248 98/161/259 50/240/290 76/243/319 
25/52 27/29 24/27 25/50 25/50 
16/1518 25/871 35/825 2 3 / 1 4 9 4  34/1501 
1534 896 860 1517 1535 
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Table 14 

Relative performance of CONMIN, CG and L-BFGS methods, counting function 
calls 

CONMIN CG L-BFGS (M3) 

Normal Accurate 

m=3  m =5 m = 3  m =5 

Best 2 0 2 19 0 1 
2nd 0 0 16 1 3 2 
3rd 10 3 1 1 8 7 
4th 3 0 1 1 4 7 
5th 5 4 2 0 7 5 
Worst 2 15 0 0 0 0 

Table 15 

Relative performance of CONMIN, CG and L-BFGS methods, counting CPU time 

CONMIN CG L-BFGS (M3) 

Normal Accurate 

m=3 m=5  m=3  m=5 

Best 1 9 10 2 4 2 
2nd 1 0 2 7 8 1 
3rd 2 6 4 2 5 5 
4th 4 3 3 4 5 6 
5th 4 2 3 2 0 6 
Worst 10 2 0 5 0 2 

6. Comparison with the partitioned quasi-Newton method 

W e  n o w  c o m p a r e  the  p e r f o r m a n c e  o f  the  L - B F G S  m e t h o d  wi th  tha t  o f  the  p a r t i t i o n e d  

q u a s i - N e w t o n  m e t h o d  ( P Q N )  o f  G r i e w a n k  a n d  Toin t ,  wh ich  is a lso  d e s i g n e d  for  

so lv ing  l a rge  p r o b l e m s .  T h e  P Q N  m e t h o d  is d e s c r i b e d  in de ta i l  in G r i e w a n k  and  

T o i n t  (1984),  and  the  c o d e  VE08 i m p l e m e n t i n g  it has  b e e n  p u b l i s h e d  by T o i n t  (1983b).  

W e  will  o n l y  d iscuss  o n e  f ea tu r e  o f  the  a l g o r i t h m  tha t  is i m p o r t a n t  in p rac t ice .  

S u p p o s e  tha t  one  o f  the  e l e m e n t  f u n c t i o n s  in (2.7) is o f  the  f o r m  

f~(x) (x, 2 3 = - x 2 )  +x3 .  

E v e n  t h o u g h  f d e p e n d s  on  th ree  va r i ab les ,  the  r a n k  o f  its H e s s i a n  ma t r ix  is o n l y  

two.  O n e  can  i n t r o d u c e  the  l i n e a r  t r a n s f o r m a t i o n  o f  va r i ab le s  Yl = x l - x 2 ,  Y2 = x3, 

so tha t  this  e l e m e n t  f u n c t i o n  d e p e n d s  on  on ly  two  var iab les .  In  VE0S the  use r  m u s t  

spec i fy  the  e l e m e n t  f u n c t i o n ,  a n d  is g iven  the  o p t i o n  o f  p r o v i d i n g  a ru le  fo r  r e d u c i n g  
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the number of variables on which this function depends. Two of our test problems 

allow for a variable reduction, and since we believe that in some cases the user may 

not wish (or may not be able) to supply the variable reduction rule, we tested the 
PQN method with and without this option. 

Two choices for the starting matrix were used in the PQN method: the identity 
T matrix scaled at the end of  the first iteration by the dual of  (3.2), o'=yoso/ l lSol l  2 

(B0 = crI), and the Hessian matrix at Xo, estimated by finite differences (Bdifr). The 
L-BFGS method was run using the scaling M3, storing m = 5 corrections. Stg stands 

for the amount of storage required by each method, "it" denotes the number of 

iterations, and nf the number of function/gradient calls. We report three times: 

iteration-time/function-time/total-time. The runs were performed on a sun  3/60. 

In Table 16 we compare the two methods on two problems that allow for variable 

reduction, and take advantage of this in the PQN method. 

Table 16 

Partioned quasi-Newton method with variable reduction, and L-BFGS method with M3 scaling and m = 5 

P N PQN L-BFGS 

B 0 = ~I B 0 = Bdi ~ 

Stg it/nf time it/nf time Stg it/nf time 

9 100 1005 3/5 5/1/6 3/5 5/1/6 1310 105/112 36/7/43 
9 1000 10005 3/5 49/4/53 4/6 57/5/62 13010 367/387 1324/284/1608 

10 121 1696 10/13 26/2/28 10/17 26/3/29 1583 47/51 17/12/29 
10 961 14656 15/22 834/19/853 15/26 830/24/854 12503 190/197 529/435/964 

In these two problems the PQN method is vastly superior, in terms of function 
evaluations, to the L-BFGS method. We see that the additional information supplied 

to the PQN method has been used very effectively. Note that the storage requirements 

of the two methods are similar. In terms of CPU time the advantage of PQN is less 

dramatic: PQN is much faster for problem 9, but the two methods have comparable 

times for the linear minimum surface problem (problem 10). 

Table 17 compares the two methods on several other problems. We include the 

two problems used in Table 16, but this time the PQN method did not use variable 
reduction. 

The L-BFGS method is very competitive in these problems, in terms of computing 

time. Even though it usually requires more iterations, this is offset by the low cost 

of computing the search direction. On the other hand, in terms of function evalu- 

ations, the PQN method is clearly the winner. Problem 12 does not really belong 

in this Table because its Hessian matrix is dense, and therefore it is not suitable 

for the PQN method. We have included it, however, to show what happens when 
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Table 17 

PQN and L-BFGS on several other problems 

P N PQN L-BFGS 

Bo = trl B o = Bditr 

Stg it/nf time it/nf time Stg it/nf time 

3 100 906 19/34 8/3/11 40/55 23/4/27 1310 33/48 9/2/11 
3 1000 9006 19/34 106/13 40/55 231/15 13010 33/48 105/17 

119 246 122 
4 100 987 39/46 29/4/33 31/39 24/2/26 1310 46/54 15/2/17 
4 1000 9762 42/49 317/26 31/39 228/18 13010 50/58 176/30 

343 246 206 
9 100 1203 12/14 16/1/17 4/7 7/1/8 1310 105/112 36/7/43 
9 1000 12003 12/14 157/10 8/11 96/8 13010 367/387 1324/284 

167 104 1608 
10 121 2396 28/40 88/3/91 10/19 57/2/59 1583 47/51 17/12/29 
10 961 20956 73/107 3373/106 15/28 1411/28 12503 190/197 529/435 

3479 1439 964 
11 100 1200 12/18 13/1/14 9/12 8/1/9 1310 15/21 4/1/5 
11 1000 12000 10/16 95/12/107 9/12 79/8/87 13010 15/22 45/18/63 
12 100 23357 95/109 14828/43 116/183 21216/74 1310 308/322 110/183 

14871 21290 293 
14 100 1200 23/30 23/4/27 10/13 12/1/13 1310 21/28 5/6/11 
14 1000 12000 19/25 180/48 10/13 96/24 13010 18/26 54/58 

228 120 112 
15 100 2643 23/32 103/4/107 25/53 77/5/82 1310 63/71 22/15/37 
15 1000 26643 34/58 1032/176 47/88 1431/266 13010 106/113 385/230 

1208 1697 615 

a problem like this is solved by the PQN method: the results are very poor. This 
problem has an objective function that may appear at first to be partially separable, 
and it requires some attention to notice that the Hessian matrix is, in fact, dense. 

To analyze these results further, we give in Table 18 more information about the 
test problems. The number of  element functions is denoted by ne. The number o f  
variables entering into the element functions is nve, and nve-vr is the number 
obtained after applying variable reduction. Using the results o f  Table 17, we give 
the average time required to perform an iteration (it-time). For the PQN method 
we have used the results corresponding to Bo = ~r/, and we recall that the L-BFGS 
method used scaling M3 and m = 5. 

The iteration time of  the L-BFGS method is, o f  course, quite predictable (it is a 
function o f  n). We observe large variations in the iteration time of  PQN: for most 
problems it is 2 to 5 times larger than that of  L-BFGS. However for problem 10 
(minimum surface problem without variable reduction) and problem 15 (sparse 
matrix square root problem) the PQN iteration time is 10 to 15 times that of  L-BFGS. 

The PQN method usually requires less storage than L-BFGS with m = 5, except 
for problem 15, where PQN requires twice as much storage. Note  that in this problem 
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Table 18 

Separability of  the objective functions, and average iteration time 
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P N ne nve nve-vr PQN L-BFGS 
it-time it-time 

3 100 50 2 2 0.42 0.27 

3 1000 500 2 2 5.58 3.18 
4 100 33 4 4 0.74 0.33 

4 1000 333 4 4 7.55 3.52 

9 100 100 2 1 1.33 0.34 
9 1000 1000 2 1 13.1 3.61 

10 121 100 4 2 3.14 0.36 

10 961 900 4 2 46.21 2.78 
11 100 99 2 2 1.08 0.27 

11 1000 999 2 2 9.5 3.0 

14 100 99 2 2 1.0 0.24 

14 1000 999 2 2 9.47 3.0 

15 100 164 5 5 4.48 0.35 
15 1000 1664 5 5 30.35 3.63 

the element functions depend on 5 variables. It thus appears from these results that 
the PQN method becomes  less attractive when the number of  variables entering 
into the element functions is greater than 4 or 5. 

7. Convergence analysis 

In this section we show that the limited memory BFGS method is globally convergent 
on uniformly convex problems, and that its rate of  convergence is N-linear. These 
results are easy to establish after noting that all Hessian approximations Hk are 
obtained by updating a bounded matrix m times using the BFGS formula. Because 
we prefer to analyze the direct BFGS formula, in what fol lows we assume that the 
algorithm updates Bk-- the  inverse of  Hk. 

Algorithm 7.1 (General limited memory BFGS algorithm). 
Step 1. Choose  Xo, m, 0 </3'  < ½, 13' < 13 < 1, and a symmetric and positive definite 

starting matrix Bo. Set k = 0. 
Step 2. Compute 

dk = --Bklgk, (7.1) 

Xk+l = Xk + akdk,  (7.2) 

where ak satisfies (2.4) and (2.5). 
Step 3. Let rh = min{k + 1, m}, and define a symmetric and positive definite matrix 

B~ °). Choose  a set o f  increasing integers ~k  -- {Jo , . . -  ,J,~-~} - { 0 , . . . ,  k}. Update 
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S lrh--I B(k °3 rh times using the pairs {Yjt, j~Jz=o , i.e. for l = 0 , . . . ,  r f i -  1 compute 

i1(I)~ oT lT(I) T 
B(k/+l)  = B(kt) ~ k  Ojl~jll'nk ~ Y j lY j l  

oT i s ( I )  ~ 
~j l~ ' k  '~jl " y~tsj! 

Set Bk+~ = B(k a), k := k + 1, and go to Step 2. 

(7.3) 

There are many possible choices of  B~ °~ in Step 3 as discussed in Section 4. For 
example we could have B~ °~= Bo, or B~ °~= Bo/yk. We will assume only that the 
sequence of matrices B~ °~, and the sequence of their inverses, are bounded. Since 
the elements of  ~?k defined in Step 3 form an increasing sequence, Algorithm 7.1 
is identical to the BFGS method when k < m. For k ~> m, 5fk can be chosen without 
this monotonicity restriction, but this may not be advantageous in practice. Note 
that Algorithms 2.1 and 7.1 are mathematically equivalent. In our code we implement 
Algorithm 2.1 because it allows us to avoid storing a matrix; Algorithm 7.1 is given 

only for the purposes of  the analysis. 
We make the following assumptions about the objective function. The matrix of  

second derivatives o f f  will be denoted by G. 

Assumptions 7.1. (1) The objective function f is twice continuously differentiable. 
(2) The level set D = {x E ~n: f ( x )  ~<f(x0)} is convex. 
(3) There exist positive constants Ml and M= such that 

M, Ilzll2 ~ S G ( x ) z  ~ M2llzll = (7.4) 

for all z c ~" and all x c D. Note that this implies that f has a unique minimizer x ,  
in /9 .  

Theorem 7.1. Let xo be a starting point .for which f satisfies Assumptions 7.1, and 
assume that the matrices B~ °~ are chosen so that {llB(k°)lt} and {IIB~°)-'II} are bounded. 

Then for any positive definite Bo, Algorithm 7.1 generates a sequence {xg} which 

converges to x , .  Moreover there is a constant 0 <~ r < 1 such that 

fk - f ,  <~ rk[fo - - f , ] ,  (7.5) 

which implies that {xk} converges R-linearly. 

Proof. I f  we define 

fo 1 G~ = G(xk + "rsk) d~', 

then 

(7.6) 

Yk = Gksk. (7.7) 
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Thus (7.4) and (7.7) give 

M 1  [[ Sk II 2 ~ yTksk <~ M 2  [[ Sk II 2, 

and 

525 

(7.8) 

It is possible to prove this result for several other line search strategies, including 
backtracking, by adapting the arguments of Byrd and Nocedal (1989, proof of 
Theorem 3.1). Note from (7.4), (7.9) and (4.1) that M~ <~ Yk <~ M2. Thus the L-BFGS 
method using strategy M3 satisfies the conditions of Theorem 7.1. 

One can implement the method of Buckley and LeNir so that it is n-step 
quadratically convergent on general problems, which implies an ~-superlinear rate 

IlYkll: s~G2kS~< M2" (7.9) 
yTsk  -- T - S k GkSk 

Let tr(B) denote the trace of B. Then from (7.3), (7.9) and the boundedness of 
{]]B~°>H}, 

tr(Bk+,) <~ tr(B~ °~) + ~- '  IlYj, II 2 < ~ t r (Bf  )) + triM2 <~ M3, (7.10) 
l~O YjlSj! 

for some positive constant M3. There is also a simple expression for the determinant 
(see Pearson, 1969; Powell, 1976), 

T 
~-'  yj, sj, ~- 'y f s j ,  s~sjs (7.11) det(Bk+,)=det(B~k°~) [1 ~Tu~l~o =det(B~°~) ~ T.,~l~,." 
I~O ~jlL~k ,3jl l~O S.~lSjl Sjll~ k Ojl 

Since by (7.10) the largest eigenvalue of B(g ~ is also less than M3, we have, using 
(7.8) and the boundedness of {llB~°~-~[[}, 

det(Bk+,) ~ det(B(g°~)(M,/ M3) ~ >- M4, (7.12) 

for some positive constant M4. Therefore from (7.10) and  (7.12) we conclude that 
there is a constant 6 > 0 such that 

s~Bksk 
COS Ok --{{Skll iiBkSkll ~ t~. (7.13) 

One can show that the line search conditions (2.4)-(2.5) and Assumptions 7.1 imply 
that there is a constant c > 0 such that 

f(xk+,) - - f (x , )  <~ (1 - c cos 20k)(f(Xk) - - f (x , ) ) ,  

see for example Powell (1976). Using (7.13) we obtain (7.5). 
From (7.4), 

1 2 ~M, llxk-x,[[ <~fk - f , ,  

which together with (7.5) implies [[xk--x, ll~rk/2[2(fo--f,)/M,]~/2 , so that the 
sequence {Xk} is E-linearly convergent also. [] 
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of convergence. The L-BFGS method does not have this property, and I~-linear 

convergence is the best we can expect. Finally we note that the algorithms of Shanno 
and Phua and Buckley and LeNir  are special cases of  Algorithm 7.1, if we let the 
integer m vary at each iteration in the interval [1, mma,,], where mrnax is the maximum 
number  of  corrections allowed (see Buckley and LeNir, 1983). Therefore Theorem 
7.1 applies also to these two methods. 

8. Final remarks 

Our tests indicate that a simple implementat ion of  the L-BFGS method performs 

better than the code of Buckley and LeNir (1985), and that the L-BFGS method 
can be greatly improved by means of a simple dynamic scaling, such as M3. Our 
tests have convinced us that the partitioned quasi-Newton method of Griewank and 
Toint is an excellent method for large scale optimization, it is highly recommended 
if the user is able and willing to supply the information on the objective function 
that the method requires, and it is particularly effective when the element functions 
depend on a small number  of  variables (less than 4 or 5, say). The L-BFGS method 
is appealing for several reasons: it is very simple to implement, it requires only 
function and gradient va lues - -and  no other information on the p rob lem- -and  it 
can be faster than the partitioned quasi-Newton method on problems where the 
element functions depend on more than 3 or 4 variables. In addition, the L-BFGS 

method appears  to be preferable to PQN for large problems in which the Hessian 
matrix is not very sparse, or for problems in which the information on the separability 
of  the objective function is difficult to obtain. 

Our tests also indicate that L-BFGS with dynamic scalings performs better than 
the C O N M I N  code of Shanno and Phua (1980) and than the standard conjugate 
gradient method (CG), except in one case: for large problems with inexpensive 
functions, CG is competitive with L-BFGS. 
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