
Databricks李潇

What’s New in the Upcoming 
Apache Spark 3.0



• Engineering Manager at Databricks

• Apache Spark Committer and PMC

• Previously, IBM Master Inventor

• Ph.D. in CISE at University of Florida

• GitHub: gatorsmile

About Me

https://github.com/gatorsmile


Unified data analytics platform for accelerating innovation across 
data science, data engineering, and business analytics

Original creators of popular data and machine learning open source projects 

Global company with 5,000 customers and 450+ partners 



3400+ Resolved JIRAs
in Spark 3.0 rc3



Adaptive Query 
Execution

Dynamic Partition 
Pruning

Query Compilation 
Speedup

Join Hints

Performance

Richer APIs

Accelerator-aware 
Scheduler

Built-in 
Functions

pandas UDF 
Enhancements

DELETE/UPDATE/
MERGE in Catalyst

Reserved 
Keywords

Proleptic Gregorian 
Calendar

ANSI Store 
Assignment

Overflow 
Checking

SQL Compatibility 

Built-in Data Sources

Parquet/ORC Nested 
Column Pruning

Parquet: Nested 
Column Filter 

Pushdown

CSV Filter 
Pushdown

New Binary
Data Source

Data Source V2 API + 
Catalog Support Java 11 SupportHadoop 3

Support
Hive 3.x Metastore
Hive 2.3 Execution

Extensibility and Ecosystem 

Structured 
Streaming UI

DDL/DML 
Enhancements

Observable 
Metrics

Event Log 
Rollover

Monitoring and Debuggability



Performance

Achieve high performance for interactive, batch, streaming and ML workloads

Adaptive Query 
Execution

Dynamic Partition 
Pruning

Query Compilation 
Speedup

Join Hints



Performance

Achieve high performance for interactive, batch, streaming and ML workloads

Adaptive Query 
Execution

Dynamic Partition 
Pruning Join HintsQuery Compilation 

Speedup



Spark Catalyst Optimizer

Spark 1.x, Rule

Spark 2.x, Rule + Cost



Query Optimization in Spark 2.x

▪ Missing statistics 

Expensive statistics collection

▪ Out-of-date statistics
Compute and storage separated

▪ Suboptimal Heuristics    

Local 

▪ Misestimated costs 
Complex environments
User-defined functions



Spark Catalyst Optimizer

Spark 1.x, Rule

Spark 2.x, Rule + Cost

Spark 3.0, Rule + Cost + Runtime



adaptive planning

Based on statistics of the finished plan nodes, re-optimize the execution plan of the remaining queries

Adaptive Query Execution [AQE]



Blog post: https://databricks.com/blog/2020/05/29/adaptive-
query-execution-speeding-up-spark-sql-at-runtime.html

Based on statistics of the finished plan nodes, re-optimize the 
execution plan of the remaining queries
• Convert Sort Merge Join to Broadcast Hash Join 
• Shrink the number of reducers
• Handle skew join

Adaptive Query Execution

https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html


One of the Most Popular Performance Tuning Tips

▪ Choose Broadcast Hash Join?
▪ Increase “spark.sql.autoBroadcastJoinThreshold”?
▪ Use “broadcast” hint?

However
▪ Hard to tune
▪ Hard to maintain over time
▪ OOM…



Why Spark not Making the Best Choice Automatically?

▪ Inaccurate/missing statistics; 

▪ File is compressed; columnar store; 

▪ Complex filters; black-box UDFs; 

▪ Complex query fragments… 



Estimate size:
30 MB

Actual size:
8 MB

Convert Sort Merge Join to Broadcast Hash Join 

Sort Merge Join

Filter

Scan

Shuffle

Sort

Scan

Shuffle

Sort

Stage 1

Stage 2
Estimate size:

100 MB

Execute Sort Merge Join

Filter

Scan

Shuffle

Sort

Scan

Shuffle

Sort

Stage 1

Stage 2
Actual size:

86 MB

Optimize Broadcast Hash Join

Filter

Scan

Shuffle

Broadcast

Scan

Shuffle

Stage 1

Stage 2
Actual size:

86 MB

Actual size:
8 MB



One More Popular Performance Tuning Tip

▪ Tuning spark.sql.shuffle.partitions
▪ Default magic number: 200 !?!

However
▪ Too small: GC pressure; disk spilling
▪ Too large: Inefficient I/O; scheduler pressure
▪ Hard to tune over the whole query plan
▪ Hard to maintain over time



Dynamically Coalesce Shuffle Partitions

Filter

Scan

Execute

Shuffle (50 part.)

Sort

Stage 1

OptimizeFilter

Scan

Shuffle (50 part.)

Sort

Stage 1

Filter

Scan

Shuffle (50 part.)

Sort

Stage 1

Coalesce (5 part.)

• Set the initial partition number high to accommodate the 
largest data size of the entire query execution

• Automatically coalesce partitions if needed after each query 
stage



Another Popular Performance Tuning Tip

▪ Symptoms of data skew
▪ Frozen/long-running tasks
▪ Disk spilling
▪ Low resource utilization in most nodes
▪ OOM

▪ Various ways
▪ Find the skew values and rewrite the queries 
▪ Adding extra skew keys…



TABLE A

Table A - Part 0

Table A - Part 1

Table B - Part 0

TABLE  B

Data Skew in Sort Merge Join

Shuffle Sort

Table B - Part 1

Table A - Part 2

Table B - Part 2

Table A - Part 3

Table B - Part 3



Table A - Part 0

Table A - Part 1

Table B - Part 0

Data Skew in Sort Merge Join

Sort

Merge-Join

Table B - Part 1

Table A - Part 2

Table B - Part 2

Table A - Part 3

Table B - Part 3

Table A – Sorted Part 0

Table B – Sorted Part 0

Table B – Sorted Part 1

Table B – Sorted Part 2

Table B – Sorted Part 3

Table A – Sorted Part 1

Table A – Sorted Part 2

Table B – Sorted Part 3

Merge-Join

Merge-Join

Merge-Join



Dynamically Optimize Skew Joins

Sort Merge Join

Filter

Scan

Execute

Shuffle

Sort

Scan

Shuffle

Sort

Sort Merge Join

Filter

Scan

Shuffle

Sort

Scan

Shuffle

Sort

Stage 1

Stage 2

Stage 1

Stage 2

Optimize

Sort Merge Join

Filter

Scan

Shuffle

Sort

Scan

Shuffle

Sort

Stage 1

Stage 2

Skew Reader Skew Reader

• Detect skew from partition sizes using runtime statistics
• Split skew partitions into smaller sub-partitions



TABLE A
Table A - Part 1

Table B - Part 0

TABLE  B

Shuffle Sort

Table B - Part 1

Table A - Part 2

Table B - Part 2

Table A - Part 3

Table B - Part 3

Table B - Part 0

Table B - Part 0

Table A - Part 0 – Split 0

Table A - Part 0 – Split 1

Table A - Part 0 – Split 2

Dynamically Optimize 
Skew Joins



Table A - Part 1

Table B - Part 0

Sort

Table B - Part 1

Table A - Part 2

Table B - Part 2

Table A - Part 3

Table B - Part 3

Table B - Part 0

Table B - Part 0

Table A - Part 0 – Split 0

Table A - Part 0 – Split 1

Table A - Part 0 – Split 2

Table A - Part 1 [Sorted]

TabB.P0.S1 [Sorted]

Table B - Part 1 [Sorted]

Table A - Part 2 [Sorted]

Table B - Part 2 [Sorted]

Table A - Part 3 [Sorted]

Table B - Part 3 [Sorted]

TabB.P0.S1 [Sorted]

TabB.P0.S0 [Sorted]

TabA.P0.S0 [Sorted]

TabA.P0.S1 [Sorted]

TabA.P0.S2 [Sorted]

Merge-Join

Merge-Join

Merge-Join

Merge-Join

Merge-Join

Merge-Join



Adaptive Query Execution



Performance

Achieve high performance for interactive, batch, streaming and ML workloads

Adaptive Query 
Execution

Dynamic Partition 
Pruning Join HintsQuery Compilation 

Speedup



Dynamic Partition Pruning

• Avoid partition scanning based on 
the query results of the other 
query fragments.

• Important for star-schema 
queries.

• Significant speedup in TPC-DS.



Dynamic Partition Pruning

60 / 102 TPC-DS queries: a speedup between 2x and 18x



t1: a large 
fact table 
with many 
partitions

t2.id < 2

t2: a dimension
table with a 
filter

SELECT t1.id, t2.pKey

FROM t1

JOIN t2

ON t1.pKey = t2.pKey

AND t2.id < 2

t1.pKey = t2.pKey

Dynamic Partition Pruning

Project

Join

Filter

Scan Scan

Optimize



SELECT t1.id, t2.pKey

FROM t1

JOIN t2

ON t1.pKey = t2.pKey

AND t2.id < 2

Dynamic Partition Pruning

Scan all the 
partitions of t1 

Filter 
pushdown

t1.pkey IN (
SELECT t2.pKey
FROM t2
WHERE t2.id < 2) 

t2.id < 2

Project

Join

Filter + Scan

Filter
Optimize

Scan

t1.pKey = t2.pKey

t1: a large 
fact table 
with many 
partitions

t2.id < 2

t2: a dimension
table with a 
filter

t1.pKey = t2.pKey

Project

Join

Filter

Scan Scan

Optimize



Dynamic Partition Pruning

Scan all the 
partitions of t1 

t2.id < 2

Project

Join

Filter + Scan

Filter

Scan

t1.pKey = t2.pKey

Scan the 
required 

partitions of t2 

t1.pKey in 
DPPFilterResult



Dynamic Partition Pruning

Optimize

Scan the 
required 

partitions of t1 

t2.id < 2

Project

Join

Filter + Scan Filter + Scan

Scan the 
required 

partitions of t2 

t1.pKey in 
DPPFilterResult

Scan all the 
partitions of t1 

t2.id < 2

Project

Join

Filter + Scan

Filter

Scan

t1.pKey = t2.pKey

Scan the 
required 

partitions of t2 

t1.pKey in 
DPPFilterResult



Dynamic Partition Pruning

90+% less file scan 33 X faster 

Optimize Optimize

Scan the 
required 

partitions of t1 

t2.id < 2

Project

Join

Filter + Scan

Scan the 
required 

partitions of t2 

t1.pKey in 
DPPFilterResult

Scan all the 
partitions of t1 

t2.id < 2

Project

Join

Filter + Scan

Filter

Scan

t1.pKey = t2.pKey

Scan the 
required 

partitions of t2 

t1.pKey in 
DPPFilterResult

Filter + Scan



Performance

Achieve high performance for interactive, batch, streaming and ML workloads

Adaptive Query 
Execution

Dynamic Partition 
Pruning Join HintsQuery Compilation 

Speedup



Optimizer Hints
▪ Join hints influence optimizer to choose the join strategies

▪ Broadcast hash join 

▪ Sort-merge join   NEW

▪ Shuffle hash join   NEW

▪ Shuffle nested loop join   NEW

▪ Should be used with extreme caution.

▪ Difficult to manage over time.



▪ Broadcast Hash Join
SELECT /*+ BROADCAST(a) */ id FROM a JOIN b ON a.key = b.key

▪ Sort-Merge Join
SELECT /*+ MERGE(a, b) */ id FROM a JOIN b ON a.key = b.key

▪ Shuffle Hash Join
SELECT /*+ SHUFFLE_HASH(a, b) */ id FROM a JOIN b ON a.key = b.key

▪ Shuffle Nested Loop Join
SELECT /*+ SHUFFLE_REPLICATE_NL(a, b) */ id FROM a JOIN b

How to Use Join Hints?



Broadcast Hash Join
Requires one side to be 
small. No shuffle, no sort, 
very fast.

Sort-Merge Join
Robust. Can handle any 
data size. Needs to shuffle 
and sort data, slower in 
most cases when the table 
size is small.

Shuffle Hash Join
Needs to shuffle data but 
no sort. Can handle large 
tables, but will OOM too if 
data is skewed.

Shuffle Nested Loop Join
Doesn’t require join keys.



Enable new use cases and simplify the Spark application development

Accelerator-aware 
Scheduler

Built-in 
Functions

pandas UDF 
enhancements

DELETE/UPDATE/
MERGE in Catalyst

Richer APIs



Enable new use cases and simplify the Spark application development

Richer APIs

Accelerator-aware 
Scheduler

Built-in 
Functions

pandas UDF 
enhancements

DELETE/UPDATE/
MERGE in Catalyst



Python 
UDF 

for SQL

Python lambda 
functions for 

RDDs

Session-
specific 

Python UDF

JAVA 
UDF in 

Python API

New Pandas UDF
Python Type Hints

Py

UDF

V 3.0V 0.7 V 1.2
2013 2015 20182014 2019/20202016 2017

V 2.0 V 2.1 V 2.3/2.4

https://spark.apache.org/docs/0.7.0/python-programming-guide.html


Py

Blog post: https://databricks.com/blog/2020/05/20/new-pandas-udfs-and-
python-type-hints-in-the-upcoming-release-of-apache-spark-3-0.html

Python 
UDF 

for SQL

Python lambda 
functions for 

RDDs

Session-
specific 

Python UDF

JAVA 
UDF in 

Python API

New Pandas UDF
Python Type HintsUDF

V 3.0V 0.7 V 1.2
2013 2015 20182014 2019/20202016 2017

V 2.0 V 2.1 V 2.3/2.4

https://databricks.com/blog/2020/05/20/new-pandas-udfs-and-python-type-hints-in-the-upcoming-release-of-apache-spark-3-0.html
https://spark.apache.org/docs/0.7.0/python-programming-guide.html


Scalar Pandas UDF
[pandas.Series to pandas.Series] 

SPARK 2.3 SPARK 3.0
Python Type Hints



Grouped Map Pandas Function API
[pandas.DataFrame to pandas.DataFrame] 

SPARK 2.3 SPARK 3.0
Python Type Hints



Grouped Aggregate Pandas UDF
[pandas.Series to Scalar] 

SPARK 2.4 SPARK 3.0
Python Type Hints



New Pandas UDF Types



Map Pandas UDF

Cogrouped Map Pandas UDF

New Pandas Function APIs



Enable new use cases and simplify the Spark application development

Accelerator-aware 
Scheduler

Built-in 
Functions

pandas UDF 
enhancements

DELETE/UPDATE/
MERGE in Catalyst

Richer APIs



Accelerator-aware Scheduling

▪ Widely used for accelerating special workloads, 
e.g., deep learning and signal processing.

▪ Supports Standalone, YARN and K8S.
▪ Supports GPU now, FPGA, TPU, etc. in the future.
▪ Needs to specify required resources by configs
▪ Application level. Will support job/stage/task level 

in the future.



The workflow

User Spark Cluster Manager

0. Auto-discover resources.

1. Submit an application with 
resource requests.

2. Pass resource requests to 
cluster manager.

4. Register executors.

3. Allocate executors with 
resource isolation.

5. Submit a Spark job. 6. Schedule tasks on available 
executors.

7. Dynamic allocation.

8. Retrieve assigned resources 
and use them in tasks.

9. Monitor and recover failed 
executors.



Discover and request accelerators

Admin can specify a script to auto-discover accelerators (SPARK-27024)
● spark.driver.resource.${resourceName}.discoveryScript
● spark.executor.resource.${resourceName}.discoveryScript
● e.g.,  `nvidia-smi --query-gpu=index ...`

User can request accelerators at application level (SPARK-27366)
● spark.executor.resource.${resourceName}.amount
● spark.driver.resource.${resourceName}.amount
● spark.task.resource.${resourceName}.amount

https://issues.apache.org/jira/browse/SPARK-27024
https://issues.apache.org/jira/browse/SPARK-27366


Retrieve assigned accelerators

User can retrieve assigned accelerators from task context 
(SPARK-27366)

context = TaskContext.get()
assigned_gpu = 
context.resources().get(“gpu”).get.addresses.head

with tf.device(assigned_gpu):
# training code ...

https://issues.apache.org/jira/browse/SPARK-27366


Cluster manager support

Standalone

SPARK-27360

YARN

SPARK-27361

Kubernetes

SPARK-27362

Mesos (not 
started)

SPARK-27363

https://issues.apache.org/jira/browse/SPARK-27360
https://issues.apache.org/jira/browse/SPARK-27361
https://issues.apache.org/jira/browse/SPARK-27362
https://issues.apache.org/jira/browse/SPARK-27363


Web UI for accelerators



Enable new use cases and simplify the Spark application development

Richer APIs

Accelerator-aware 
Scheduler

Built-in 
Functions

pandas UDF 
enhancements

DELETE/UPDATE/
MERGE in Catalyst



32 New Built-in Functions









Make monitoring and debugging Spark applications more comprehensive and stable

Structured 
Streaming UI

DDL/DML 
Enhancements

Observable 
Metrics

Event Log 
Rollover

Monitoring and Debuggability



Make monitoring and debugging Spark applications more comprehensive and stable

Monitoring and Debuggability

Structured 
Streaming UI

DDL/DML 
Enhancements

Observable 
Metrics

Event Log 
Rollover



Structured Streaming UI



Make monitoring and debugging Spark applications more comprehensive and stable

Monitoring and Debuggability

Structured 
Streaming UI

DDL/DML 
Enhancements

Observable 
Metrics

Event Log 
Rollover



New Command EXPLAIN FORMATTED
*(1) Project [key#5, val#6]
+- *(1) Filter (isnotnull(key#5) AND (key#5 = Subquery scalar-subquery#15, [id=#113]))

: +- Subquery scalar-subquery#15, [id=#113]
: +- *(2) HashAggregate(keys=[], functions=[max(key#21)])
: +- Exchange SinglePartition, true, [id=#109]
: +- *(1) HashAggregate(keys=[], functions=[partial_max(key#21)])
: +- *(1) Project [key#21]
: +- *(1) Filter (isnotnull(val#22) AND (val#22 > 5))
: +- *(1) ColumnarToRow
: +- FileScan parquet default.tab2[key#21,val#22] Batched: true, DataFilters: [isnotnull(val#22), (val#22 > 

5)], Format: Parquet, Location: InMemoryFileIndex[file:/user/hive/warehouse/tab2], PartitionFilters: [], 
PushedFilters: [IsNotNull(val), GreaterThan(val,5)], ReadSchema: struct<key:int,val:int>

+- *(1) ColumnarToRow
+- FileScan parquet default.tab1[key#5,val#6] Batched: true, DataFilters: [isnotnull(key#5)], Format: Parquet, 

Location: InMemoryFileIndex[file:/user/hive/warehouse/tab1], PartitionFilters: [], PushedFilters: [IsNotNull(key)], 
ReadSchema: struct<key:int,val:int>



* Project (4)
+- * Filter (3)

+- * ColumnarToRow (2)
+- Scan parquet default.tab1 (1)

(1) Scan parquet default.tab1
Output [2]: [key#5, val#6]
Batched: true
Location: InMemoryFileIndex [file:/user/hive/warehouse/tab1]
PushedFilters: [IsNotNull(key)]
ReadSchema: struct<key:int,val:int>

(2) ColumnarToRow [codegen id : 1]
Input [2]: [key#5, val#6]
(3) Filter [codegen id : 1]
Input [2]: [key#5, val#6]
Condition : (isnotnull(key#5) AND (key#5 = Subquery scalar-subquery#27, [id=#164]))

(4) Project [codegen id : 1]
Output [2]: [key#5, val#6]
Input [2]: [key#5, val#6]

EXPLAIN FORMATTED
SELECT * 
FROM   tab1 
WHERE  key = (SELECT max(key) 

FROM   tab2 
WHERE  val > 5



(5) Scan parquet default.tab2
Output [2]: [key#21, val#22]
Batched: true
Location: InMemoryFileIndex [file:/user/hive/warehouse/tab2]
PushedFilters: [IsNotNull(val), GreaterThan(val,5)]
ReadSchema: struct<key:int,val:int>

(6) ColumnarToRow [codegen id : 1]
Input [2]: [key#21, val#22]

(7) Filter [codegen id : 1]
Input [2]: [key#21, val#22]
Condition : (isnotnull(val#22) AND (val#22 > 5))

===== Subqueries =====
Subquery:1 Hosting operator id = 3 Hosting Expression = Subquery scalar-subquery#27, [id=#164]
* HashAggregate (11)
+- Exchange (10)

+- * HashAggregate (9)
+- * Project (8)

+- * Filter (7)
+- * ColumnarToRow (6)

+- Scan parquet default.tab2 (5)

(8) Project [codegen id : 1]
Output [1]: [key#21]
Input [2]: [key#21, val#22]

(9) HashAggregate [codegen id : 1]
Input [1]: [key#21]
Keys: []
Functions [1]: [partial_max(key#21)]
Aggregate Attributes [1]: [max#35]
Results [1]: [max#36]

(10) Exchange
Input [1]: [max#36]
Arguments: SinglePartition, true, [id=#160]

(11) HashAggregate [codegen id : 2]
Input [1]: [max#36]
Keys: []
Functions [1]: [max(key#21)]
Aggregate Attributes [1]: [max(key#21)#33]
Results [1]: [max(key#21)#33 AS max(key)#34]



DDL/DML 
Enhancements

Make monitoring and debugging Spark applications more comprehensive and stable

Monitoring and Debuggability

Structured 
Streaming UI

Observable 
Metrics

Event Log 
Rollover



A flexible way to monitor data quality.

Observable Metrics



Reduce the time and complexity of enabling applications that were written for other 
relational database products to run in Spark SQL.

Reserved Keywords 
in Parser

Proleptic Gregorian 
Calendar

ANSI Store 
Assignment

Overflow 
Checking

SQL Compatibility



Reduce the time and complexity of enabling applications that were written for other 
relational database products to run in Spark SQL.

Reserved Keywords 
in Parser

Proleptic Gregorian 
Calendar

ANSI Store 
Assignment

Overflow 
Checking

SQL Compatibility



A safer way to do table insertion and avoid bad data.

ANSI store assignment + overflow check



A safer way to do table insertion and avoid bad data.

ANSI store assignment + overflow check



Enhance the performance and functionalities of the built-in data sources

Parquet/ORC Nested 
Column Pruning

Parquet: Nested Column 
Filter Pushdown

New Binary
Data Source

CSV Filter 
Pushdown

Built-in Data Sources



Enhance the performance and functionalities of the built-in data sources

Parquet/ORC Nested 
Column Pruning

Parquet: Nested Column 
Filter Pushdown

New Binary
Data Source

CSV Filter 
Pushdown

Built-in Data Sources



▪ Skip reading useless data blocks when only a few inner fields are 
selected.

Better performance for nested fields



▪ Skip reading useless data blocks when there are predicates with 
inner fields.

Better performance for nested fields



Improve the plug-in interface and extend the deployment environments

Data Source V2 API + 
Catalog Support

Hive 3.x Metastore
Hive 2.3 Execution

Hadoop 3 
Support

Java 11 
Support

Extensibility and Ecosystem



Improve the plug-in interface and extend the deployment environments

Data Source V2 API + 
Catalog Support

Hive 3.x Metastore
Hive 2.3 Execution

Hadoop 3 
Support

Java 11 
Support

Extensibility and Ecosystem



Catalog plugin API
Users can register customized catalogs and use Spark to 
access/manipulate table metadata directly.

JDBC data source v2 is coming in Spark 3.1



To developers: When to support Data Source V2?
▪ Pick V2 if you want to provide catalog functionalities, as V1 

doesn’t have such ability.
▪ Pick V2 If you want to support both batch and streaming, as V1 

uses separated APIs for batch and streaming which makes it 
hard to reuse code.

▪ Pick V2 if you are sensitive to the scan performance, as V2 allows 
you to report data partitioning to skip shuffle, and implement 
vectorized reader for better performance.

Data source v2 API is not as stable as V1!



Improve the plug-in interface and extend the deployment environments

Data Source V2 API + 
Catalog Support

Hive 3.x Metastore
Hive 2.3 Execution

Hadoop 3 
Support

Java  11 
Support

Extensibility and Ecosystem



Spark 3.0 Builds
• Only builds with Scala 2.12

• Deprecates Python 2 (already EOL)

• Can build with various Hadoop/Hive versions
– Hadoop 2.7 + Hive 1.2
– Hadoop 2.7 + Hive 2.3 (supports Java 11) [Default]
– Hadoop 3.2 + Hive 2.3 (supports Java 11)

• Supports the following Hive metastore versions:
– "0.12", "0.13", "0.14", "1.0", "1.1", "1.2", "2.0", "2.1", "2.2", "2.3", "3.0", "3.1"



Extensibility and Ecosystem







• Announced April 24, 2019

• Pure Python library

• Aims at providing the pandas API on top of Spark.

• Seamless transition between small and large data

Koalas



• Unifies the two ecosystems with a familiar API

• pandas users: 
- scale out the pandas code using Koalas

- make learning PySpark much easier

• Spark users:
- more productive by pandas-like functions

Koalas



▪ pip install koalas
▪ conda install koalas
▪ Docs and updates on github.com/databricks/koalas
▪ Project docs are published on  koalas.readthedocs.io

37,000+
Downloads per day 

845,223
Downloads this May

2100+
GitHub Stars

33
Bi-weekly releases

https://github.com/databricks/koalas
https://koalas.readthedocs.io/en/latest/


Architecture

Catalyst Optimization & 
Tungsten Execution

DataFrame APIsSQL

Koalas

CoreData Source 
Connectors

pandas

SPARK

A lean API layer



Challenge: increasing 
scale and complexity of 
data operations

Struggling with the “Spark 
switch” from pandas

More than 10X faster with 
less than 1% code changes

How Virgin Hyperloop One reduced processing 
time from hours to minutes with Koalas

Blog post : https://t.co/2cZ4m5ymGo
Webinar: https://youtu.be/hYvHg2PwUIc

https://t.co/2cZ4m5ymGo
https://youtu.be/hYvHg2PwUIc


32 New Built-in Functions

▪ map

Documentation
• Web UI

• SQL reference

• Migration guide

• Semantic versioning guidelines











Adaptive Query 
Execution

Dynamic Partition 
Pruning

Query Compilation 
Speedup

Join Hints

Performance

Richer APIs

Accelerator-aware 
Scheduler

Built-in 
Functions

pandas UDF 
Enhancements

DELETE/UPDATE/
MERGE in Catalyst

Reserved 
Keywords

Proleptic 
Gregorian Calendar

ANSI Store 
Assignment

Overflow 
Checking

SQL Compatibility 

Built-in Data Sources

Parquet/ORC Nested 
Column Pruning

Parquet: Nested 
Column Filter 

Pushdown

CSV Filter 
Pushdown

New Binary
Data Source

Data Source V2 API + 
Catalog Support Java 11 SupportHadoop 3

Support
Hive 3.x Metastore
Hive 2.3 Execution

Extensibility and Ecosystem 

Structured 
Streaming UI

DDL/DML 
Enhancements

Observable 
Metrics

Event Log 
Rollover

Monitoring and Debuggability



Try Databricks 
Runtime 7.0 Beta 

For Free

https://databricks.
com/try-databricks

https://databricks.com/try-databricks


Thank you for your 
contributions!



THE VIRTUAL EVENT 
FOR DATA TEAMS
● Extended to 5 days with over 200 sessions

● 4x the pre-conference training

● Keynotes by visionaries and thought 

leaders

June 22-26   |   Organized by 





微信公众号
Apache Spark技术交流社区


