CIMEC FRERK - QUATEEN . 2

. .
0 ® .

'.-

-‘ o S .
I A
. o

o ."

What’s New rn th
Apache Spark 3. 0,

Databricks S

@ Meetup E=ED

BigData+AI

A, 65551

i | ".l‘n'.

.

About Me

< databricks

Engineering Manager at Databricks
Apache Spark Committer and PMC
Previously, IBM Master Inventor
Ph.D. in CISE at University of Florida

GitHub: gatorsmile

< databricks

https://github.com/gatorsmile

databricks

Unified data analytics platform for accelerating innovation across

data science, data engineering, and business analytics

Global company with 5,000 customers and 450+ partners

Original creators of popular data and machine learning open source projects

SPark’ | pELTALAKE' | mlf/c |

Koalas

® SparkSQL @ Spark Core ® Tests/Docs @ PySpark
@® MLib/ML @ Structured Streaming @ Others

9%
4% APACHE

Spark

Py?g/;ark - Spark SQL
- 46%

et Doce 3400+ Resolved JIRAs
12% in Spark 3.0 rc3

Spark Core
16%

< databricks

Performance Built-in Data Sources

B ® B B W ¥ &

Adaptive Query Dynamic Partition Query Compilation Join Hi Parquet/ORC Nested CSV Filter Parquet: Nested New Binary
; . oin Hints))
Execution Pruning Speedup Column Pruning Pushdown Column Filter Data Source
Pushdown
Richer APIs SOL Compatibility
: O N[z - 2
® 0 ! A T
e
Accelerator-aware Built-in pandas UDF DELETE/UPDATE/ Overflow ANSI Store Proleptic Gregorian Reserved
Scheduler Functions Enhancements = MERGE in Catalyst Checking Assignment Calendar Keywords
Extensibility and Ecosystem Monitoring and Debuggability
S & {a S =
N (&éﬁz < =4 5 € <
== —
Data Source V2 API + Hadoop 3 Hive 3.x Metastore Java 11 Support Structured DDL/DML Observable Event Log
Catalog Support Support Hive 2.3 Execution PP Streaming Ul Enhancements Metrics Rollover

Performance

Adaptive Query Dynamic Partition Query Compilation
Execution Pruning Speedup

S © o

Join Hints

Achieve high performance for interactive, batch, streaming and ML workloads

< databricks

Performance

Adaptive Query
Execution

Achieve high performance for interactive, batch, streaming and ML workloads

< databricks

Spark Catalyst Optimizer

Spark 1.x, Rule

Spark 2.x, Rule + Cost

databricks

Query Optimization in Spark 2.x

. Missing statistics . Suboptimal Heuristics
Expensive statistics collection Local

. Out-of-date statistics . Misestimated costs
Compute and storage separated Complex environments

User-defined functions

< databricks

Spark Catalyst Optimizer

Spark 1.x, Rule
Spark 2.x, Rule + Cost

Spark 3.0, Rule + Cost +

databricks

Adaptive Query Execution [AQE]

SQL

Dataset

DataFrame

I
Parser |

Analyzer |

K

Cost Model

Optimizer : Planner
I
Unresolved ; Optimized " .
- Ph |
Logical Plan Legical Fian Logical Plan‘“1 P{:;;a
Metadata | |
Catalog

adaptive planning

Query
Execution

1

Selected

"IPhysical Plan

1

RDDs
Ll (DAGs)

Based on statistics of the finished plan nodes, re-optimize the execution plan of the remaining queries

< databricks

Adaptive Query Execution

Based on statistics of the finished plan nodes, re-optimize the
execution plan of the remaining queries

Convert Sort Merge Join to Broadcast Hash Join
Shrink the number of reducers
Handle skew join

Blog post: https://databricks.com/blog/2020/05/29/adaptive-
query-execution-speeding-up-spark-sql-at-runtime.html|

< databricks

https://databricks.com/blog/2020/05/29/adaptive-query-execution-speeding-up-spark-sql-at-runtime.html

Choose Broadcast Hash Join?
Increase ”spark.sqI.autoBroadcastJoinT"ﬁrg%ngg?,

N

11 7 © f? s ““
Use “broadcast” hint"” e &u"-§
However I *
» . YOOI &
Hard to tune LI T
| W ‘ J
Hard to maintain over time N NN
' ¢\ 30®
OOM... Al Il 1 |
¢ %2009
0000
00000 \\\
2 ‘ . .ﬁ.'

Why Spark not Making the Best Choice Automatically?

= [naccurate/missing statistics;
= File iscompressed; columnar store;
= Complex filters; black-box UDFs;

= Complex query fragments...

< databricks

Convert Sort Merge Join to Broadcast Hash Join

Sort Merge Jain . Execute > Sort Merge Join . Optimize > Broadcast Hash Jain

Broadcast

Shuffle Shuffle Shuffle

Stage 1 Stage 1 Stage 1

Estimate size: Actual size: Actual size:
100 MB Stage 2 86 MB Stage 2 86 MB Stage 2
Estimate size: Actual size: Actual size:
30 MB 8 MB 8 MB

< databricks

One More Popular Performance Tuning Tip *

Tuning spark.sqgl.shuffle.partitions

Default magic number: 200 !?! > > ‘

XN J 3

However j&u.ﬁ
Too small: GC pressure; disk sp|II|ng < ;“

Too large: Inefficient |/0; scheduler p're su&:

Hard to tune over the whole query plan an : P

Hard to maintain over time "0e

¢ 52009

*o0000

so000@®

s v 0 & . fj.'

Dynamically Coalesce Shuffle Partitions

« Set the initial partition number high to accommodate the
largest data size of the entire query execution
« Automatically coalesce partitions if needed after each query

stage

Coalesce (5 part.)

Shuffle (50 part.) Shuffle (50 part.)

[} \\ . 1 . . \\
Filter : e Filter 't Optimize >~
1,7

Stage 1 Stage 1 Stage 1

< databricks

Another Popular Performance Tuning Tip

Symptoms of data skew

Frozen/long-running tasks “l

[illi ‘X § J N

Disk spilling oot £-<
Low resource utilization in most nodés} k‘“
o N @

OOM ok 2

I e " Q®I'H
Various ways e Soi
ildndd the skew \;aluis and rewrite the‘uEezr'lEsE
Ing extr W »
g extra skew keys g4 <
- N § 1 14

Data Skew in Sort Merge Join

TABLEA

Table A - Part 2

. Table B - Part 2

TABLE B

- Table A - Part 3

Table B - Part 3

< databricks

Data Skew in Sort Merge Join

Table A - Part1

Table B - Part 1

Table A - Part 2

Table B - Part 2

- Table A - Part 3

Table B - Part 3

< databricks

Table A - Sorted Part 1

Table B - Sorted Part 1

Table A - Sorted Part 2

Table B - Sorted Part 2

- Table B - Sorted Part 3

Table B - Sorted Part 3

Dynamically Optimize Skew Joins

» Detect skew from partition sizes using runtime statistics
« Split skew partitions into smaller sub-partitions

Sort Merge Jain

Sort Merge Join i Execute Sort Merge Join

Skew Reader Skew Reader

Shuffle Shuffle

Filter Filter

Stage 1

< databricks | stage 2 Stage 2 Stage 2

\
\

Dynamically Optimize |
Skew Joins |

TABLE A

Table B - Part 1

Table A - Part 2

Table B - Part 2

- Table A - Part 3

< databricks Table B - Part 3

TABLE B

-’

/ .
Table A -Part0 - Split0

4

[Table B-Part0

|

| i Can

: - Table A - Part 0 - Split1

: Table B-Part0

|

I - Table A - Part 0 - Split 2

|

\ Table B - Part0

N

Table A - Part1

Table B - Part1

Table A-Part2

Table B - Part 2

- Table A - Part 3

Table B - Part3

\
\

- . o o e o e . ———

7’
-

TabB.P0.S1[Sorted]

_|
o
o
>
5
=
n
N
(%)
o
pm
®
2,
-_— s - - -

/

7
]
- TabA.P0.S1 [Sorted]
]

DS

Table A - Part 1[Sorted]

Table B - Part 1[Sorted]

Table A - Part 2 [Sorted]

Table B - Part 2 [Sorted]

- Table A - Part 3 [Sorted]

Table B - Part 3 [Sorted]

Adaptive Query Execution

TPC-DS 1TB No-Stats With vs. Without Adaptive Query Execution
500

375

Duration {sec)
N
8

125

qr7 Qs qd qi1 qr4 q84 q91 qd9 qb4
B AQE OFF B AQEON

< databricks

Performance

Dynamic Partition
Pruning

F)
FH

Achieve high performance for interactive, batch, streaming and ML workloads

< databricks

Dynamic Partition Pruning

Avoid partition scanning based on
the query results of the other

query fragments.
Important for star-schema C~@
ueries. 8
d 2047
Significant speedup in TPC-DS. "~ © ;:z
@ N N “‘
so000000
cv000000
databricks e o000 “‘:
e o 000 ..

Dynamic Partition Pruning

TPC-DS 1TB With vs. Without Dynamic Partition Pruning

q25 ql7 ql5 qa2 q6 q58 Q56 q54 q71 Q33
B DPP OFF B oPPON

60 /102 TPC-DS queries: a speedup between 2x and 18x

< databricks

Dynamic Partition Pruning

SELECT tl.id, t2.pKey tl.pKey = t2.pKey
FROMU
JOIN 12 Rl

ON tl.pKey = t2.pKey t2.id<?
AND t2.id <2

o

t2: a dimension| tl:alarge

table with a fact table
filter with many
partitions

< databricks

Dynamic Partition Pruning

SELECT tlid, t2.pKey
FROMUOT

tl.pKey = t2.pKey

JOIN t2

ON tl.pKey = t2.pKey t2.id <2

ANDt2.id <2

tZ2: a dimension
table with a
filter

< databricks

t1.pKey = t2.pKey t1.pkey IN (
SELECT t2.pKey
FROMt2

WHERE t2.id <2)
Filter

t2.id<?2

Filter + Scan
tl: alarge Filter Scan all the
fact table pushdown partitions of t
with many
partitions

Dynamic Partition Pruning

< databricks

Project

tl.pKey = t2.pKey

tl.pKey in

DPPFilterResult
Filter

t2.id<?

Filter + Scan

Scan the Scan all the

required partitions of tl
partitions of t2

Dynamic Partition Pruning

Project

.pRey in
<9 DPPFNerResult

Filter + Scan

Filter + Scan

Scan the
required

Scan the
required
partitions of t2 partitions of t]

< databricks

b)
N

Project

tl.pKey = t2.pKey

tl.pKey in
DPPFilterResult

Filter
t2.0d<?

Filter + Scan

Scan all the
partitions of t

Scan the
required
partitions of t2

Dynamic Partition Pruning

M Response Time (sec)

140
tl.pKey = t2.pKey
105 S . = INGhhEN R0 . tl.pKey in
Optimize Optimize ! DPPFilterResult
70 pRey in Filter
2.id<?2 DPPFiRgrResult 2.id<?2
35 Filter + Scan Filter + Scan Filter + Scan
Scan the Scan the Scan the Scan all the
0 DPP_OFF DPP_ON required required required partitions of t

partitions of t2 partitions of t]

34 X faster 90+% less file scan

partitions of t2

Performance

Join Hints

e

Achieve high performance for interactive, batch, streaming and ML workloads

< databricks

Optimizer Hints

RSN

Join hints influence optimizer to choose the join strategles/

Broadcast hash join /
Sort-merge join |
Shuffle hash join

] |

Shuffle nested loop join

Should be used with extreme caution.

Difficult to manage over time.

databricks

How to Use Join Hints?

Broadcast Hash Join
SELECT /*+ BROADCAST(a) */ id FROM a JOIN b ON a.key = b.key

Sort-Merge Join
SELECT /*+ MERGE(a, b) */ id FROM a JOIN b ON a.key = b.key

Shuffle Hash Join
SELECT /*+ SHUFFLE_HASH(a, b) */ id FROM a JOIN b ON a.key = b.key

Shuffle Nested Loop Join
SELECT /*+ SHUFFLE_REPLICATE_NL(a, b) */ id FROMa JOIN b

< databricks

N

Broadcast Hash Join

Requires one side to be
small. No shuffle, no sort,
very fast.

Shuffle Hash Join N\

Needs to shuffle data but
no sort. Can handle large
tables, but will OOM too if
data is skewed.

Sort-Merge Join \

Robust. Can handle any
data size. Needs to shuffle
and sort data, slower in
most cases when the table
size is small.

Shuffle Nested Loop Join \

Doesn't require join keys.

< databricks

Richer APIs

Accelerator-aware Built-in pandas UDF DELETE/UPDATE/
Scheduler Functions enhancements MERGE in Catalyst

B @ i &

Enable new use cases and simplify the Spark application development

< databricks

Richer APIs

pandas UDF
enhancements

i

Enable new use cases and simplify the Spark application development

< databricks

Python lambda Python Session- JAVA pandas New Pandas UDF

functions for UDF specific UDF in :
RDDs for SOL Python UDF Pythonap| UDF PythonTypeHints
2013 2014 2015 2016 2017 2018 2019/2020
V0.7 V1.2 V2.0 V21 V2324 V3.0

< databricks P y Sﬁaﬁlg

https://spark.apache.org/docs/0.7.0/python-programming-guide.html

New Pandas UDF
Python Type Hints

L L

2013 2014 2015 2016 2017 2018 2019/2020
V0.7 V1.2 V2.0 V2.1 V2.3/2.4 V3.0

Blog post: https://databricks.com/blog/2020/05/20/new-pandas-udfs-and-
python-type-hints-in-the-upcoming-release-of-apache-spark-3-0.html

< databricks P y SpQ

https://databricks.com/blog/2020/05/20/new-pandas-udfs-and-python-type-hints-in-the-upcoming-release-of-apache-spark-3-0.html
https://spark.apache.org/docs/0.7.0/python-programming-guide.html

Scalar Pandas UDF
[pandas.Series to pandas.Series]

@pandas_udf('long', PandasUDFType.SCALAR) @pandas_udf('long")
def pandas_plus_one(v): def pandas_plus_one(s: pd.Series) —> pd.Series:
return v + 1 return s + 1
SPARK 2.3 SPARK 3.0

Python Type Hints

< databricks

Grouped Map Pandas Function API
[pandas.DataFrame to pandas.DataFrame]

@pandas_udf(df.schema, PandasUDFType.GROUPED_MAP) def subtract_mean(pdf: pd.DataFrame) —> pd.DataFrame:
def subtract_mean(pdf): v = pdf.v
v = pdf.v return pdf.assign(v=v - v.mean())

return pdf.assign(v=v - v.mean())
df.groupby("id").applyInPandas(subtract_mean, schema=df.schema).show()
df.groupby("id").apply(subtract_mean).show()

SPARK 2.3 SPARK 3.0
Python Type Hints

< databricks

Grouped Aggregate Pandas UDF
[pandas.Series to Scalar]

@pandas_udf("double", PandasUDFType.GROUPED_AGG) @pandas_udf("double")
def pandas_mean(v): def pandas_mean(v: pd.Series) —> float:
return v.sum() return v.sum()

Python Type Hints

< databricks

New Pandas UDF Types

@pandas_udf (" long"
def calculat
Do some expensive initialization with a state

state = very_expensive_initialization()
for x in iterator:

Use that state for the whole iterator.
yield calculate_with_state(x, state)

df.select(calculate("value")).show()

from typing import Iterator, Tuple
import pandas as pd

from pyspark.sql.functions import pandas_udf

@pandas_udf (" long")
def multiply_two(

return la x b for a, b in iteratorl
spark.range(10).select(multiply_two("id", "id")).show()

< databricks

New Pandas Function APIs

from typing import Iterator
import pandas as pd

df = spark.createDataFrame([(1, 21), (2, 30)], ("id", "age")) Map Pandas UDF

def pandas_filter(iterator: Iterator[pd.DataFrame]) -> Iterator[pd.DataFrame]:
for pdf in iterator:
yield pdf[pdf.id == 1]

df.mapInPandas(pandas_filter, schema=df.schema).show()

import pandas as pd

dfl = spark.createDataFrame(
[(1201, 1, 1.0), (1201, 2, 2.0), (1202, 1, 3.0), (1202, 2, 4.0)],
('Itimell' llidll' llvlll))

df2 = spark.createDataFrame(
[(1201, 1, "x"), (1201, 2, "y")], (“time", “id", "v2")) Cogrouped Map Pandas UDF

def asof_join(left: pd.DataFrame, right: pd.DataFrame) -> pd.DataFrame:
return pd.merge_asof(left, right, on="time", by="id")

dfl.groupby("id").cogroup(

df2.groupby("id")
).applyInPandas(asof_join, "time int, id int, v1 double, v2 string").show()

< databricks

Richer APIs

Accelerator-aware
Scheduler

Xo

Enable new use cases and simplify the Spark application development

< databricks

Accelerator-aware Scheduling

............

Widely used for accelerating special workloads, ' troducing Project Hydrogen

e.g., deep learning and signal processing.
Supports Standalone, YARN and K8S. o
Supports GPU now, FPGA, TPU, etc. in the future.

G: ng scheduling: tasks “all or nothing” to reconcile fundamental incom
L. .wee, opai. and Ctribu -2d ML frameworks

%
Application level. Will support job/stage/task level =~ - N
in the future. n

3

g oApr heSrark’s <~heduling since the inception of the |

ement Proposal (SPIP) to embrace distribute

Needs to specify required resources by configs

databricks

The workflow

User

Spark

Cluster Manager

0. Auto-discover resources.

1. Submit an application with
resource requests.

2. Pass resource requests to
cluster manager.

4. Register executors.

3. Allocate executors with
resource isolation.

5. Submit a Spark job.

6. Schedule tasks on available
executors.

7. Dynamic allocation.

8. Retrieve assigned resources
and use them in tasks.

9. Monitor and recover failed
executors.

< databricks

Discover and request accelerators

Admin can specify a script to auto-discover accelerators (SPARK-27024)

e spark.driver.resource.S{resourceName}.discoveryScript
e spark.executor.resource.S{resourceName}.discoveryScript
e e.g., nvidia-smi--query-gpu=index...

User can request accelerators at application level (SPARK-27366)

e spark.executor.resource.S{resourceName}.amount
e spark.driver.resource.S{resourceName}.amount
e spark.task.resource.S{resourceName}.amount

< databricks

https://issues.apache.org/jira/browse/SPARK-27024
https://issues.apache.org/jira/browse/SPARK-27366

Retrieve assigned accelerators

User can retrieve assigned accelerators from task context
(SPARK-27366)

context = TaskContext.get()

assigned gpu =
context.resources().get(“gpu”).get.addresses.head

with tf.device(assigned gpu):
training code ...

< databricks

https://issues.apache.org/jira/browse/SPARK-27366

Cluster manager support

Standalone YARN
SPARK-27360 SPARK-27361
Kubernetes Mesos (not
started)
SPARK-27362 SPARK-27363

< databricks

https://issues.apache.org/jira/browse/SPARK-27360
https://issues.apache.org/jira/browse/SPARK-27361
https://issues.apache.org/jira/browse/SPARK-27362
https://issues.apache.org/jira/browse/SPARK-27363

Web Ul for accelerators

Spa%z a8 aMARRKOR Jobrs Stages Swrage Enviionment Executors Spark shell application Ul
Executors
wShow Additional Metrics
[jSelect All
[JOn Heap Memory
[_joft Heap Memory
[AResources
Summary
RDD Storage Disk Active Failed Complete Total Task Time (GC Shuffle Shuffle
+ Blocks Memory Used Cores Tasks Tasks Tasks Tasks Time) Input Read Write Blacklisted
Active(2) 0 00B/87GiB 008 2 0 0 0 0 0.0 ms (0.0 ms) 008 00B 008 o
Dead(0) © ooB/o0B ooB 0 0 0 0 0 0.0 ms (0.0 ms) 00B 00B 008 0
Total(2) © 00B/87GIB 008 2 0 0 0 0 0.0 ms (0.0 ms) 008 00B oo8 0
Executors
show' 20 j entries Search:
Task
Time
Executor RDD Storage Disk Active Falled Complete Total (6Cc Shuffle Shuffle Thread
[+] » Address Status Blocks Memory Used Cores urces | Tasks Tasks Tasks Tasks Time) Input Read Write Logs Dump
driver 10.28.9.112:40931 Active 0 ooB/84 00B 0 0 0 0 0 0.0ms 008 o0B 008 Thread
GiB (0.0 ms) Dump
1 lomg-x299:43885 Active 0 008/ 008 2 pu: (0] 0 0 0 0 00ms 008 00B 008 stdout Thread
366.3 MB (0.0 ms) stderr Dump

Showing 1 to 2 of 2 entries Previous 1 Next

< databricks

Richer APIs

Built-in
Functions

&

Enable new use cases and simplify the Spark application development

< databricks

32 New Built-in Functions

=
Q
count 1f oo 3 some
bit_countS & o 2 ® schéma_of_csv
ip_withatanh | o m R
map_Z]p_W]th 2 u:’-IQ.(D from CSV('BI'S"
~bool anddSint &Y, oto_csv i s =
< ool_an 53 % - S
S make mterl\al al = < imax by Q™3
O< " w 1_._,:
9|-. ery MiN_by .. =% —~
ake: ~timestamp A
transform_values o
-

< databricks

Cmd 1
1 SELECT map_keys(map(1, 'a', 2, 'b'))
» (1) Spark Jobs

map_keys(map(1, a, 2, b))
w array
0:1
1:2
] A | &
Command took 0.13 seconds -- by wenchen@databricks.com at 5/29/2020, 1:52:49 PM on DBR 7.0 Shared Autoscaling

Cmd 2

1 SELECT map_values(map(1, 'a', 2, 'b'))
» (1) Spark Jobs

map_values(map(1, a, 2, b))
v array

0:a

1:b
:2:] J - &

Command took 0.06 seconds -- by wenchen@databricks.com at 5/29/2020, 1:53:01 PM on DBR 7.0 Shared Autoscaling

< databricks

Cmd 3
1 SELECT transform_keys(map(1, 1, 2, 2, 3, 3), (k, v) => k + 1)
» (1) Spark Jobs

transform_keys(map(1, 1, 2, 2, 3, 3), lambdafunction((namedlambdavariable() + 1), namediambdavariable(), namedlambdavariable()))
v object
2:1
3:2
4:3
B8 4~ &
Command took .14 seconds -- by wenchen@databricks.com at 5/29/2020, 1:53:11 PM on DBR 7.0 Shared Autoscaling

Cmd 4
1 SELECT transform_values(map(1, 1, 2, 2, 3, 3), (k, v) => k + 1)
» (1) Spark Jobs

transform_values(map(1, 1, 2, 2, 3, 3), lambdafunction((namedlambdavariable() + 1), namedlambdavariable(), namedlambdavariable()))

v object
12
2:3
3:4

B 4 &
Command took 0.15 seconds -- by wenchen@databricks.com at 5/29/2020, 1:53:26 PM on DBR 7.0 Shared Autoscaling

< databricks

Cmd 10
1 display(sql("select map(1l, 1, 2, 2, 3, 3) as m").select(transform_keys($"m", (key, value) => key + 1)))
» (1) Spark Jobs

transform_keys(m, lambdafunction((x + 1), x, y))
+ object
2:1
3:2
4:3
B A | &
Command took 0.57 seconds -- by wenchen@databricks.com at 6/1/2020, 11:09:52 AM on DBR 7.0 Shared Autoscaling

Cmd 11

1 display(sql("select map(1, 1, 2, 2, 3, 3) as m").select(transform_values($"m", (key, value) => key + 1)))

» (1) Spark Jobs

transform_values(m, lambdafunction((x + 1), x, y))
v object

1:2

2:3

3:4

B al - <

Command took 0.54 seconds -- by wenchen@databricks.com at 6/1/2020, 11:10:23 AM on DBR 7.0 Shared Autoscaling

Monitoring and Debuggability

Structured DDL/DML Observable Event Log
Streaming Ul Enhancements Metrics Rollover

5% £ &

Make monitoring and debugging Spark applications more comprehensive and stable

w

< databricks

Monitoring and Debuggability

Structured
Streaming Ul

£

Make monitoring and debugging Spark applications more comprehensive and stable

< databricks

Structured Streaming Ul

Streaming Query
vActive Streamir 9] Queries (1)
Name Status
<no name> RUNNING
> eted Streaming Queries (1
Name Status
<no name> FINISHED

< databricks

Id

2e9ae2b1-32fe-469a-
980f-d226¢1b2f888

Id

2e9ae2b1-32fe-
469a-980f-
d226c1b21888

Run ID

8493-307e878f084d

Run ID Start Time
76be1362-04ae- 2020/05/22
4a93-b176- 04:16:55
6fc684245293

Start Time

ba01b1f3-d585-4¢50- 2020/05/22 04:19:32

Duration

1 minute 50
seconds

Duration

46 minutes 55

seconds

Avg Input /sec
90.24

Avg Input /sec

99.92

Avg Process /sec

101.22

Avg Process /sec

87.76

Lastest Batch

9

Lastest Batch
227

Error

Monitoring and Debuggability

DDL/DML
Enhancements

@l

Make monitoring and debugging Spark applications more comprehensive and stable

< databricks

New Command EXPLAIN FORMATTED

*(1) Project [key#5, val#6]

- *(1) Filter (isnotnull(key#5) AND (key#5 = Subquery scalar-subquery#15, [id=#113]))
. +- Subquery scalar-subquery#15, [id=#113]

- *(2) HashAggregate(keys=[], functions=[max(key#21)])

+- Exchange SinglePartition, true, [id=#109]

- *(1) HashAggregate(keys=[], functions=[partial_max(key#21)])
- *(1) Project [key#21]
- *(1) Filter (isnotnull(val#22) AND (val#22 > 5))
- *(1) ColumnarToRow

+- FileScan parquet default.tab2[key#21,val#22] Batched: true, DataFilters: [isnotnullival#22), (val#22 >
6)] Format: Parquet, Location: InMemoryFilelndex(file:/user/hive/warehouse/tab?], PartitionFilters: [],
PushedFilters: [IsNotNull(val), GreaterThan(val,5)], ReadSchema: struct<key:intval:int>

- *(1) ColumnarToRow

+- FileScan parquet default.tabl[key#5,val#6] Batched: true, DataFilters: [isnotnull(key#5)], Format: Parquet,
Location: InMemoryFilelndexlfile:/user/hive/warehouse/tabl], PartitionFilters: [], PushedFilters: [IsNotNull(key)],
ReadSchema: struct<key:intval:int>

PRt EXPLAIN FORMATTED
+-* ColumnarToRow (2) SELECT *
+- Scan parquet default.tab1(1) FROM tabl
(1) Scan parquet default.tabl WHERE key = (SELECT max(key)
Output [2]: [key#b, val#B] FROM tab?
Batched: true
ocation: InMemoryFilelndex [file:luser/hive/warehouse/tabl] WHERE val >5 7

PushedFilters: [IsNotNull(key)]
ReadSchema: struct<key:intval:int>

(2) ColumnarToRow [codegenid : 1]
Input [2]: [key#b5, val#6]

(3) Filter [codegenid : 1]

Input [2]: [key#b5, val#6]
Condition : (isnotnull(key#5) AND (key#5 = Subquery scalar-subquery#27, [id=#164]))

(4) Project [codegenid : 1]
Output [2]: [key#b, val#B]
Input [2]: [key#b5, val#6]

< databricks

Subguery:1Hosting operator id = 3 Hosting Expression = Subquery scalar-subquery#27, [id=#164]

* HashAggregate (11)
+- Exchange (10)
+- * HashAggregate (9)
+-* Project (8)
+- * Filter (7)
+-* ColumnarToRow (6)
+- Scan parquet default.tab2 (5)

(5) Scan parquet default.tab?

Output [2]: [key#21, val#22]

Batched: true

Location: InMemoryFilelndex [file:/user/hive/warehouse/tab?]
PushedFilters: [IsNotNull(val), GreaterThan(val,5)]
ReadSchema: struct<key:intval:int>

(6) ColumnarToRow [codegenid : 1]
Input [2]: [key#21, val#22]

(7) Filter [codegenid : 1]
Input [2]: [key#21, val#22]
Condition : (isnotnull(val#22) AND (val#22 > 5))

(8) Project [codegenid : 1]
Output [1]: [key#21]
Input [2]: [key#21, val#22]

(9) HashAggregate [codegen id : 1]
Input [1]: [key#21]

Keys: []

Functions [1]: [partial_max(key#21)]
Aggregate Attributes [1]: [max#35]
Results [1]: [max#36]

(10) Exchange
Input [1]: [max#36]
Arguments: SinglePartition, true, [id=#160]

(11) HashAggregate [codegenid : 2]

Input [1]: [max#36]

Keys: []

Functions [1]: [max(key#21)]

Aggregate Attributes [1]: [max(key#21)#33]
Results [1]: [max(key#21)#33 AS max(key)#34]

Monitoring and Debuggability

Observable
Metrics

=

Make monitoring and debugging Spark applications more comprehensive and stable

< databricks

W 0 N O U p W N M

10
11
12

Observable Metrics

A flexible way to monitor data quality.

val stream = spark.readStream...

stream.observe("data_quality", |count($"error") / count(lit(1l))) .writeStream...

spark.streams.addListener (new StreamingQueryListener() {
override def onQueryProgress(event: QueryProgressEvent): Unit = {
event.progress.observedMetrics.get("data_quality").foreach {

case Row(pct_parse_errors: Double) 1if pct_parse_errors > 0.05 =>

case _ => // OK

}
b

< databricks

// Trigger alert

SQL Compatibility

ANSI Store Overflow Reserved Keywords Proleptic Gregorian
Assignment Checking in Parser Calendar

;: N 1 ¢ ‘@_g —O_—Oj

Reduce the time and complexity of enabling applications that were written for other
relational database products to runin Spark SQL.

N

< databricks

\

SQL Compatibility

ANSI Store Overflow
Assignment Checking
= N/\%

Z I

Reduce the time and complexity of enabling applications that were written for other
relational database products to runin Spark SQL.

< databricks

ANSI store assignment + overflow check

A safer way to do table insertion and avoid bad data.

Cmd 7

1 CREATE TABLE ansi_tbl(i INT, j STRING) USING parquet

OK
Command took 0.27 seconds -- by wenchen@databricks.com at 5/29/2020, 2:14:10 PM on DBR 7.8 Shared Autoscaling
Cmd 8
1 -- write int value to string column is safe

2 INSERT INTO ansi_tbl VALUES (1, 1)

» (1) Spark Jobs

OK
Command took 2.75 seconds -- by wenchen@databricks.com at 5/29/2020, 2:16:42 PM on DBR 7.8 Shared Autoscaling
Cmd 9
1 -- write string value to int column is not safe

2 INSERT INTO ansi_tbl VALUES ("1", "1")

[HError in SQL statement: AnalysisException: Cannot write incompatible data to table '‘default'. ansi_tbl'':
- Cannot safely cast 'i': StringType to IntegerType;

Command took 0.31 seconds -- by wenchen@databricks.com at 5/29/2020, 2:16:50 PM on DBR 7.0 Shared Autoscaling

< databricks

ANSI store assignment + overflow check

A safer way to do table insertion and avoid bad data.

Cmd 10

1 -- write long value to int column is OK 1if no overflow
2 INSERT INTO ansi_tbl VALUES (1L, "1")

» (1) Spark Jobs
OK

Command took 2.21 seconds -- by wenchen@databricks.com at 5/29/2020, 2:16:58 PM on DBR 7.0 Shared Autoscaling

Cmd 11

1 -- fail at runtime if overflow happens
2 INSERT INTO ansi_tbl VALUES (12345678912345L, "1")

[HError in SQL statement: ArithmeticException: Casting 12345678912345 to int causes overflow

Command took 0.33 seconds -- by wenchen@databricks.com at 5/29/2020, 2:17:08 PM on DBR 7.0 Shared Autoscaling

< databricks

Built-in Data Sources

Parquet/ORC Nested CSV Filter Parquet: Nested Column New Binary
Column Pruning Pushdown Filter Pushdown Data Source

E l = 2l

Enhance the performance and functionalities of the built-in data sources

< databricks

Built-in Data Sources

Parquet/ORC Nested Parquet: Nested Column
Column Pruning Filter Pushdown

= =

Enhance the performance and functionalities of the built-in data sources

< databricks

Better performance for nested fields

Skip reading useless data blocks when only a few inner fields are
selected.

1 spark.read.table("nested").select("col.a").explain()

== Physical Plan ==
x (1) Project [col#33245196.a AS a#33253077]
+- % (1) ColumnarToRow

+- FileScan parquet default.nested[col#33245196] Batched: true, DataFilters: [],
s: [],|ReadSchema: struct<col:struct<a:int>>

< databricks

Better performance for nested fields

- Skip reading useless data blocks when there are predicates with
inner fields.

1 spark.read.table("nested").filter($"col.a" > 0).explain()

== Physical Plan ==
*x(1) Project [col#33245196]
+- %x(1) Filter (disnotnull(col#33245196) AND (col#33245196.a > 0))
+- % (1) ColumnarToRow
+- FileScan parquet default.nested[col#33245196] Batched: true, DataFilters: [isnotnu
ouse/nested], PartitionFilters: [],|PushedFilters: [IsNotNull(col), GreaterThan(col.a,0)]},

< databricks

Extensibility and Ecosystem

Data Source V2 API + Javall Hadoop 3 Hive 3.x Metastore

Catalog Support Support Support Hive 2.3 Execution
e &, N o)
E7 N j\o

Improve the plug-in interface and extend the deployment environments

< databricks

Extensibility and Ecosystem

Data Source V2 API +
Catalog Support

O&{‘ZbO

Improve the plug-in interface and extend the deployment environments

< databricks

Catalog plugin API

Users can register customized catalogs and use Spark to
access/manipulate table metadata directly.

-— Assume a MySQL connector 1is registered as catalog named "mysql"
SELECT * FROM mysql.dbl.tl;

INSERT INTO mysql.db2.t2 SELECT * FROM temp_view;

CREATE TABLE mysql.dbl.t3(i INT, j STRING);

ALTER TABLE mysql.dbl.t3 ADD COLUMN k INT;

o b WN -

JDBC data source v2 is coming in Spark 3.1

< databricks

To developers: When to support Data Source V27

- Pick V2 if you want to provide catalog functionalities, as V1
doesn't have such ability.

- Pick V2 If you want to support both batch and streaming, as V1
uses separated APIs for batch and streaming which makes it
hard to reuse code.

- Pick V2 if you are sensitive to the scan performance, as V2 allows
you to report data partitioning to skip shuffle, and implement
vectorized reader for better performance.

Data source vZ2 APl is not as stable as V1!

< databricks

Extensibility and Ecosystem

Java 11 Hadoop 3 Hive 3.x Metastore
Support Support Hive 2.3 Execution

& RS (=
= ! S
Improve the plug-in interface and extend the deployment environments

< databricks

Spark 3.0 Builds

Only builds with Scala 2.12
Deprecates Python 2 (already EOL)

Can build with various Hadoop/Hive versions

- Hadoop 2.7+ Hive 1.2
- Hadoop 2.7 + Hive 2.3 (supports Java 11) [Default]
- Hadoop 3.2 + Hive 2.3 (supports Java 11)

Supports the following Hive metastore versions:
- "0.12"%,"0.138% "0.14", "1.0", "1.1°, .27, "2.0%, "2.17, "2.2", "2.3", "3.0", "3.1"

< databricks

Extensibility and Ecosystem

“

() ~

Koalas

< databricks

< databricks

wmalz
BRI

4% PythonfYAHR
FEF(HLBEFRE]
#HaHED . #iEGl

r-ﬂt‘

‘Pythondt ¢

, [EIETER

. BRI,

REZMERTIE? EXHAZMBERTE
EHRATFAXKIR, EEBTRBIWGEEELENT T

DY

< databricks

% of Stack Overflow questions that month

16.00%

14.00%

12.00% -

10.00%

8.00% —

6.00% -

4.00% -

2.00% -

0.00%

e T T RA 1 T T 5 =1 T
2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2

Year

020

® c#

@ python
® javascript
® java

® php

@ c++

@ perl

® scala

Koalas x

~ ~

* Announced April 24, 2019
* Pure Python library

Koalas

* Aims at providing the pandas API on top of Spark.

* Seamless transition between small and large data

< databricks

Koalas

* Unifies the two ecosystems with a familiar AP

* pandas users:
- scale out the pandas code using Koalas

- make learning PySpark much easier

* Sparkusers:

- more productive by pandas-like functions

< databricks

Daily Download Quantity of koalas package - Overall

30d 60d 90d 120d el

Downloads

pip install koalas
conda install koalas

Docs and updates on github.com/databricks/koalas
Project docs are published on koalas.readthedocs.io

< databricks

30,000 -
—.—
5550 With_Mirrors
0~ Without_Mirrors \
IRITNY
0
S O . PN - s » : ; £ a2 A o A R S
) LN S 3> S > o ¥oood ¥oood ¥y & & &

57,000+

Downloads per day

845,223

Downloads this May

2100+

GitHub Stars

33

Bi-weekly releases

https://github.com/databricks/koalas
https://koalas.readthedocs.io/en/latest/

Architecture

Koalas Alean APl layer

SPARK

SOL DataFrame APlIs

Catalyst Optimization &
Tungsten Execution

Data Source
Connectors

Core

< databricks

,\/%ﬂ How Virgin Hyperloop One reduced processing
hyperlecopone +ima from hours to minutes with Koalas

pandas / pyspark / koalas profiling - UDF & others

(the lower the better) . .
Challenge: increasing

B pandas

N o scale and complexity of
pyspark
data operations

150

time [s]

Struggling with the “Spark
switch” from pandas

50

o T THas T 1eso0 -r 1e6.0
. More than 10X faster with
Blog post : https://t.co/2cZ4m5ymGo QSS than 1% code Cha”gey
Webinar: https://youtu.be/hYvHg2PwUlc

< databricks

https://t.co/2cZ4m5ymGo
https://youtu.be/hYvHg2PwUIc

Documentation
- Web Ul

)

« SOL reference

* Migration guide |
« Semantic versioning guidelines%i 8
20

so000e <
,aoooocoww;

(ﬁ

i |
il
9
9
Bl |
9
@

@

E
b
D
)@
L | .
406

\

< databricks

SpOf ago Overview Programming Guides~ APIDocs~ Deploying~ More~

Spark Overview L3

Apache Spark is a unified analytics engine for large-scale data processing. it provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and
structured data processing, MLIIb for machine learning, GraphX for graph processing, and Structured Streaming for incremental computation and
stream processing.

Security

Security in Spark is OFF by default. This could mean you are vulnerable to attack by default. Please see Spark Security before downloading and
running Spark.

Downloading

Get Spark from the downloads page of the project website. This documentation is for Spark version 3.0.0. Spark uses Hadoop's client libraries for
HDFS and YARN. Downloads are pre-packaged for a handful of popular Hadoop versions. Users can also downioad a “Hadoop free" binary and
run Spark with any Hadoop version by augmenting Spark’s classpath. Scala and Java users can include Spark in their projects using its Maven
coordinates and Python users can install Spark from PyPI.

If you'd like to build Spark from source, visit Building Spark.

Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS), and it should run on any platform that runs a supported version of
Java. This should include JVMs on x86_64 and ARM64. It's easy to run locally on one machine — all you need is to have java installed on your
system PATH, or the JAVA_HOME environment variable pointing to a Java installation.

Spark runs on Java 8/11, Scala 2.12, Python 2.7+/3.4+ and R 3.1+. Java 8 prior to version 8u92 support is deprecated as of Spark 3.0.0. Python 2
and Python 3 prior to version 3.6 support is deprecated as of Spark 3.0.0. R prior to version 3.4 support is deprecated as of Spark 3.0.0. For the
Scala API, Spark 3.0.0 uses Scala 2.12. You will need to use a compatible Scala version (2.12.x).

For Java 11, -Dio.netty. tryReflectionSetAccessible=true is required additionally for Apache Arrow library. This prevents
java. lang.UnsupportedOperationException: sun.misc.Unsafe or java.nio.DirectByteBuffer.(long, int) not available when Apache
Arrow uses Netty internally.

Running the Examples and Shell

< databricks

Sp‘diz a0y Overview Programming Guides~ APlDocs~ Deploying~ More~

Spark Overview R

Apache Spark is a unified analytics engine for large-scale data processing. It provides high-level APls in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and
structured data processing, MLIib for machine learning, GraphX for graph processing, and Structured Streaming for incremental computation and
stream processing.

Security

Security in Spark is OFF by default. This could mean you are vulnerable to attack by default. Please see Spark Security before downloading and
running Spark.

Downloading

Get Spark from the downloads page of the project website. This documentation is for Spark version 3.0.1-SNAPSHOT. Spark uses Hadoop’s
client libraries for HDFS and YARN. Downioads are pre-packaged for a handful of popular Hadoop versions. Users can also download a “Hadoop
free” binary and run Spark with any Hadoop version by augmenting Spark’s classpath. Scala and Java users can include Spark in their projects
using its Maven coordinates and Python users can install Spark from PyP!.

If you'd like to build Spark from source, visit Building Spark.

Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS), and it should run on any platform that runs a supported version of
Java. This should include JVMs on x86_64 and ARM64. It's easy to run locally on one machine — all you need is to have java installed on your
system PATH, or the JAVA_HOME environment variable pointing to a Java installation.

Spark runs on Java 8/11, Scala 2.12, Python 2.7+/3.4+ and R 3.1+. Java 8 prior to version 8u92 support is deprecated as of Spark 3.0.0. Python 2
and Python 3 prior to version 3.6 support is deprecated as of Spark 3.0.0. R prior to version 3.4 support is deprecated as of Spark 3.0.0. For the
Scala API, Spark 3.0.1-SNAPSHOT uses Scala 2.12. You will need to use a compatible Scala version (2.12.x).

For Java 11, -Dio.netty.tryReflectionSetAccessible=true is required additionally for Apache Arrow library. This prevents
java. lang.UnsupportedOperationException: sun.misc.Unsafe or java.nio.DirectByteBuffer.(long, int) not available when Apache
Arrow uses Netty internally.

Running the Examples and Shell

APACHE

Spr a0 Overview Programming Guides ~ AP| Docs ~ Deploying » More ~

spark saL cuide SQL Reference

o Getting Started Spark SQL is Apache Spark’s module for working with structured data. This guide is a reference for Structured Query
e Data Sources Language (SQL) and includes syntax, semantics, keywords, and examples for common SQL usage. It contains information for

¢ Performance Tuning « the following topics:
o Distributed SQL Engine

o PySpark Usage Guide for Pz ¢ ANSI Compliance

o Migration Guide e Data Types
¢ SQL Reference e Datetime Pattern
o ANS| Compliance ¢ Functions
o Data Types o Built-in Functions
o Datetime Pattern o Scalar User-Defined Functions (UDFs)
o Functions o User-Defined Aggregate Functions (UDAFs)
o |dentifiers o Integration with Hive UDFs/UDAFs/UDTFs
o Literals o |dentifiers
o Null Semantics o Literals
o SQL Syntax o Null Semanitics
e SQL Syntax
k o DDL Statements
o DML Statements

o Data Retrieval Statements
o Auxiliary Statements

< databricks

< databricks

SPO‘-? s0o Overview Programming Guides~ APIDocs~ Deploying~ More~

Spark Overview

Apache Spark is a unified analytics engine for large-scale data processing. It provides high-level APIs in Java, Scala, Python and R, and an
optimized engine that supports general execution graphs. It also supports a rich set of higher-level tools including Spark SQL for SQL and
structured data processing, MLIIb for machine learning, GraphX for graph processing, and Structured Streaming for incremental computation and
stream processing.

N

Security

Security in Spark is OFF by default. This could mean you are vuinerable to attack by default. Please see Spark Security before downloading and
running Spark.

Downloading

Get Spark from the downloads page of the project website. This documentation is for Spark version 3.0.0. Spark uses Hadoop's client libraries for
HDFS and YARN. Downloads are pre-packaged for a handful of popular Hadoop versions. Users can also download a “Hadoop free” binary and
run Spark with any Hadoop version by augmenting Spark's classpath. Scala and Java users can include Spark in their projects using its Maven
coordinates and Python users can Install Spark from PyPI.

If you'd like to build Spark from source, visit Bullding Spark.

Spark runs on both Windows and UNIX-like systems (e.g. Linux, Mac OS), and it should run on any platform that runs a supported version of
Java. This should include JVMs on x86_64 and ARM64. It's easy to run locally on one machine — all you need is to have java installed on your
system PATH, or the JAVA_HOME environment variable pointing to a Java installation.

Spark runs on Java 8/11, Scala 2.12, Python 2.7+/3.4+ and R 3.1+. Java 8 prior to version 8u92 support is deprecated as of Spark 3.0.0. Python 2
and Python 3 prior to version 3.6 support is deprecated as of Spark 3.0.0. R prior to version 3.4 support is deprecated as of Spark 3.0.0. For the
Scala API, Spark 3.0.0 uses Scala 2.12. You will need to use a compatible Scala version (2.12.x).

For Java 11, -Dio.netty. tryReflectionSetAccessible=true is required additionally for Apache Arrow library. This prevents
java.lang.UnsupportedOperationException: sun.misc.Unsafe or java.nio.DirectByteBuffer.(long, int) not available when Apache
Arrow uses Netty internally.

Running the Examples and Shell

Performance

X || X

©

X\||v

Adaptive Query Dynamic Partition Query Compilation
Execution Pruning Speedup
Richer APIs
Accelerator-aware Built-in pandas UDF
Scheduler Functions Enhancements

Extensibility and Ecosystem

)

Hive 3.x Metastore
Hive 2.3 Execution

N

Y
Hadoop 3
Support

Data Source V2 APl +
Catalog Support

(o

Join Hints

&

DELETE/UPDATE/
MERGE in Catalyst

4L,

==

Java 11 Support

Built-in Data Sources

8 W &

C3

Parquet/ORC Nested CSV Filter Parquet: Nested
Column Pruning Pushdown Column Filter
Pushdown

SOL Compatibility

< ﬂ s = ~0—0

|
e
Overflow ANSI Store Proleptic
Checking Assignment Gregorian Calendar

Monitoring and Debuggability

K &l @

Structured DDL/DML
Streaming Ul Enhancements

Observable
Metrics

New Binary
Data Source

b

Reserved
Keywords

Event Log
Rollover

Try Databricks Databricks Runtime Version © Learn more

Runtime 7.0 Beta Runtime: 7.0 Beta (Scala 2.12, Spark 3.0.0-preview2) v
For Free - Databricks Runtime
t‘é 7.0 Genomics Beta Scala 2.12, Spark 3.0.0-preview?2
i 7.0 ML Beta Scala 2.12, Spark 3.0.0-preview?2
. | 6.5 Scala 2.11, Spark 2.4.5
https://databricks. | g5 genomics Scala 2.11, Spark 2.4.5
com/try-databricks ' 6.5 ML GPU, Scala 2.11, Spark 2.4.5

< databricks

https://databricks.com/try-databricks

& —— -

BREH4° " Thank you for your
contributions!

SPARK+AI SUMMIT

June 22-26 | Organized by < databricks

THE VIRTUAL EVENT
FOR DATA TEAMS

e Extended to 5 days with over 200 sessions
e 4x the pre-conference training
e Keynotes by visionaries and thought

leaders

NowFREE T

—

(FES « (aed < DAMO

Spark '

"BMEAR" R BSHERRE RIS

EIEBM
o
BYFERAL
ES 8

Challenge

FMEEERITEERAE
CHEER (PE) BRAT

MIER; WIAYHES-WEER; BRE30ER; SEAYBNEE;

$TETHEMA
Apache Sparkd[H...

Farol HEARS
Bl Apache SparkiiAR3ziHH X

